
Nexus: A GPU Cluster Engine for 
Accelerating DNN-Based Video Analysis

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, 
Matthai Philipose, Arvind Krishnamurthy, Ravi Sundaram



Analyze video at large scale

2

Real-time traffic monitoring

Surveillance

Game stream indexing

Intelligent family camera



Video
stream

Video analysis pipeline

3

Frame 
sampling

Light-weight 
analysis

DNN-based 
analysis Aggregation

Analysis
output

Most computation and cost



DNN serving similar to traditional 
distributed serving

4

Frontend

backend

backend
latency: 100ms

• Auto scaling

• Load balancing

• Latency constraints



DNN serving imposes additional 
constraints

5

Frontend

GPU

GPU
latency: 100ms

1. Use accelerators



DNN serving imposes additional 
constraints

6

Frontend

GPU

GPU

model
latency: 100ms

model

1. Use accelerators

2. Pre-load models



DNN serving imposes additional 
constraints

7

Frontend

GPU

GPU

model
latency: 100ms

model

batch

1. Use accelerators

2. Pre-load models

3. Batch processing

batch



Existing DNN serving systems are single-
app solutions
E.g., Tensorflow Serving, Clipper
• Do not coordinate resource allocations across DNN applications
• Rely on external schedulers that cannot perform cross-app 

optimizations

8

How to build a serving system that 
coordinates the serving of multiple 
DNN applications?



Optimization opportunities

1. Cluster-level: batch-aware, latency-aware resource allocation 
across models

2. Application-level: handle complex queries

3. Model-level: batch at sub-model granularity

9



Opportunity 1: cluster-level resource allocation

10

GPU

GPU

GPU

GPU

GPU



Opportunity 1: cluster-level resource allocation

11

duty cycle: 8

worst latency: 12
Model 1
SLO: 12
Rate: 1/2



Opportunity 1: cluster-level resource allocation

12

duty cycle: 8

worst latency: 12

duty cycle: 10

Violate 
latency SLO

Latency SLO limits the batching optimization

Model 1
SLO: 12
Rate: 1/2



Opportunity 1: cluster-level resource allocation

13

Model 2
SLO: 18
Rate: 1/4

50%

50%

Model 1
SLO: 12
Rate: 1/2

duty cycle: 8

duty cycle: 12



Opportunity 1: cluster-level resource allocation

14

Model 2
SLO: 18
Rate: 1/4

50%

50%

Model 1
SLO: 12
Rate: 1/2

duty cycle: 8

duty cycle: 8



Opportunity 1: cluster-level resource allocation

15

Model 2
SLO: 18
Rate: 1/4

50%
Model 1
SLO: 12
Rate: 1/2

duty cycle: 8

Challenge: GPU sharing has to account for SLO 
and “squishy” load demands across models

63%

duty cycle: 8



Opportunity 2: app-level complex query

16

Model Latency SLO (ms) Throughput (reqs/s/GPU)
Detection Recognition ! = 0.1 ! = 1 ! = 10

40 60
50 50
60 40

Obj 
Det Rec

! objects

Latency SLO 100ms



Opportunity 2: app-level complex query

17

Obj 
Det Rec

! objects

Latency SLO 100ms

Model Latency SLO (ms) Throughput (reqs/s/GPU)
Detection Recognition ! = 0.1 ! = 1 ! = 10

40 60 Low Medium High
50 50 Medium High Medium
60 40 High Medium Low



Opportunity 2: app-level complex query

18

Obj 
Det Rec

! objects

Latency SLO 100ms

Model Latency SLO (ms) Throughput (reqs/s/GPU)
Detection Recognition ! = 0.1 ! = 1 ! = 10

40 60 Low Medium High
50 50 Medium High Medium
60 40 High Medium LowChallenge: Latency split impacts efficiency and needs to be adapted to workload



Opportunity 3: model-level transfer learning

• Fine-tune a model to a different dataset or task

19

model



Opportunity 3: model-level transfer learning

• Fine-tune a model to a different dataset or task

20

model 1model

Challenge: How to speed up the common part across models?

model 2 model 3 model 4



Nexus: efficient and scalable DNN 
execution system on GPU cluster

1. Profiling-based batch-aware resource allocator

2. Query analyzer determines latency split given latency SLO

3. Batch common prefix across models

21



Nexus: efficient and scalable DNN 
execution system on GPU cluster

1. Profiling-based batch-aware resource allocator

2. Query analyzer determines latency split given latency SLO

3. Batch common prefix across models

22



Resource allocation problem

• Bin-packing problem: pack model sessions (model, SLO) to GPUs

• Optimization goal: minimize total number of GPUs

• Constraint: requests need to be served within latency SLOs

• More complex than bin packing due to
• Change the batch size (squishy tasks)

• Need to meet latency SLO

23



Squishy bin-packing algorithm
1. Allocate one GPU for each model session, and choose largest 

batch size &' such that (' + *' &' ≤ ,'

2. Merge these nodes into fewer nodes
Maintain two invariants:
• Duty cycles will never increase
• Occupancy of combined nodes ≤ 1

24

duty cycle (' = &'/.'

exec latency ℓ01(&')
Extra cycles to fit 
in other models Model 4'

How to merge two nodes?
Which nodes to merge?



How to merge two nodes?

25

Node 1

Node 2



How to merge two nodes?

26

1. Use the minimum duty cycle of 
two nodes as the new duty cycle, 
and adjust batch size

Node 1

Node 2

Node 1

Node 2



How to merge two nodes?

27

Merged 
Node

Node 1

Node 2

Node 1

Node 2

1. Use the minimum duty cycle of 
two nodes as the new duty cycle, 
and adjust batch size

2. Valid merge if occupancy of 
merged node is no more than 1



Which nodes to merge?

• Sort all nodes by its occupancy in decreasing order

• For each node

• Find a merging that yields highest occupancy

• Otherwise, add this node in the scheduled nodes

28



Nexus: efficient and scalable DNN 
execution system on GPU cluster

1. Profiling-based batch-aware resource allocator

2. Query analyzer determines latency split given latency SLO

3. Batch common prefix across models

29



Query Analysis

30

Given: query latency SLO ,, request rate for model 5 as 67, and max 
throughput of model 5 with time budget 8 as TP7(8)
Goal: minimize the total number of GPUs



Query Analysis

31

1. Extract the dataflow dependency graph between 
model invocations

Traffic app

SSD

face car

RS

RF RC

Given: query latency SLO ,, request rate for model 5 as 67, and max 
throughput of model 5 with time budget 8 as TP7(8)
Goal: minimize the total number of GPUs



Query Analysis

32

2. Use the dynamic programming

Define function ;(5, 8) as the min #GPUs required to 
run model 5 and subtree of 5 within time budget 8
; 5, 8 = min

@AB@
⁄67 TP7(8D) + E

F:HI→HK

;(L, 8 − 8D)

result is ; .NN8, ,
Traffic app

SSD

face car

RS

RF RC

Given: query latency SLO ,, request rate for model 5 as 67, and max 
throughput of model 5 with time budget 8 as TP7(8)
Goal: minimize the total number of GPUs

#GPUs for SSD #GPUs for subtrees 
(face, car)

; O, 8

8′

8 − 8′



Nexus: efficient and scalable DNN 
execution system on GPU cluster

1. Profiling-based batch-aware resource allocator

2. Query analyzer determines latency split given latency SLO

3. Batch common prefix across models

33



Prefix batching for transfer learning

• Compute the hash of sub-tree and detect common sub-trees

34

Different suffixesCommon prefix



Prefix batching for transfer learning

• Compute the hash of sub-tree and detect common sub-trees
• Load common prefix once and different suffixes

35

Different suffixes

Common prefix



Prefix batching for transfer learning

• Compute the hash of sub-tree and detect common sub-trees
• Load common prefix once and different suffixes
• Execute common prefix in a batch of mixed requests and execute 

different suffixes sequentially

36

Execute common prefix in a batch

ba
tc

h



Evaluation
• Baseline: Clipper and Tensorflow Serving

• Both lack support for cluster and complex queries

• Batch-oblivious scheduler
allocates # GPUs ∝ request rate / max throughput under 
latency SLO on a single GPU

• Naive query analysis
splits query latency SLO evenly to each stage

37



Case study: game analysis 

38

character

digits

input

LeNet Res-
Net

output

x6



Case study: game analysis
• 20 Games with popularity distribution (Zipf-0.9)
• Specialize ResNet-50 by fine-tuning the last layer for each game
• 16 Nvidia GTX 1080Ti with latency SLO 50ms

39

0

1000

2000

3000

4000

TF Serving Clipper Nexus

9.4x



Case study: game analysis

40

0

1000

2000

3000

4000

TF Serving Clipper Nexus w/o prefix
batching

9.4x

• 20 Games with popularity distribution (Zipf-0.9)
• Specialize ResNet-50 by fine-tuning the last layer for each game
• 16 Nvidia GTX 1080Ti with latency SLO 50ms

-12%



Case study: game analysis

41

0

1000

2000

3000

4000

TF Serving Clipper Nexus w/o prefix
batching

w/o squishy
schedule

-31%

-12%

9.4x

• 20 Games with popularity distribution (Zipf-0.9)
• Specialize ResNet-50 by fine-tuning the last layer for each game
• 16 Nvidia GTX 1080Ti with latency SLO 50ms



Case study: traffic monitoring

42

input

face car

output

SSDPersons

Cars



Case study: traffic monitoring

43

Latency SLO: 400ms, 16 Nvidia GTX 1080Ti

0

100

200

300

400

500

600

TF Serving Clipper Nexus w/o query
analysis

w/o squishy
schedule

-19%
-22%1.8x



Large scale evaluation
• Deploy Nexus on 100 Nvidia K80 GPUs
• Run 7 different applications with changing workload

44

0

2000

4000

6000
W

oU
kl

oa
G 

(U
eT

s/
s)

0%

25%

50%

75%

100%

G
P8

 c
lu

sW
eU

 u
sa

ge

0 200 400 600 800 1000
7iPe (s)

0.1%

1.0%

10.0%

%a
G 

Ua
We

Adapt GPU allocation

Serve requests within 
latency SLOs



Conclusion

Nexus serves multiple applications at high utilization on a 
GPU cluster while satisfying latency SLOs
• Uses squishy bin-packing to schedule DNN workloads

• Analyzes complex queries

• Enables prefix batching across models

45

Code available at
https://github.com/uwsampl/nexus

https://github.com/uwsampl/nexus

