
Enhancing Mobile Apps to Use Sensor 
Hubs without Programmer Effort

Haichen Shen, Aruna Balasubramanian, 
Anthony LaMarca, David Wetherall

1



Continuous sensing apps

2

Participatory sensing:
MobiPerf

Healthcare apps:
Ambulation

Lifestyle monitoring:
BeWell, Acoustic

Step Counting Fall Detection Driver Monitor Theft Detection



But it drains the battery

3

Problem: CPU frequently wakes up to process 
sensor data



Sensor hub: low power processor

4

Apple M7

Intel Merrifield

TI’s Tiva

~1.5 mW at 2MHz



Existing approaches make it hard 
to leverage sensor hub

APIs 
• Provided by software 

company, e.g. Apple, 
Google

ü Easy to program
✗Only support a set of 

pre-defined events
✗Require programmer 

effort

Hardware SDK
• Provided by hardware 

manufacturer, e.g. TI 
TivaWare

ü Full control of sensor 
hub
✗Compatibility
✗Require programmer 

effort

5



MobileHub: leverage sensor hub 
without programmer effort

6

Optimized app: Same semantics, 
but more energy efficient

MobileHub
System

Analyze app and 
rewrite binary



MobileHub example

Trigger 

Steps:
0

No change to app semantics

CPUSensor Display

Trigger 

0
CPUSensor Display

1

[Idle]
[Active]

1

MobileHub

CPU idle for longerChallenge: How does MobileHub know when the 
application needs to be triggered?

App
Notification

Steps:



Step 3a Sensor hub program: 
Implement the classifier in the sensor 
hub, corresponding to the app

Step 2 Learning: Learn how 
changes in sensor values result 
in app notifications

Step 3b Application rewriting: 
Rewrite app to offload sensing to the 
sensor hub

Step 1 Dynamic taint tracking: 
Track app notifications for a series 
of sensor inputs

Optimized
app

Original
app

Step 0: Sensor 
traces

Taint
log

Classifier 
model

Sensor 
parameter

MobileHub system overview

MobileHub
System



Step 3a Sensor hub program: 
Implement the classifier in the sensor 
hub, corresponding to the app

Step 2 Learning: Learn how 
changes in sensor values result 
in app notifications

Step 3b Application rewriting: 
Rewrite app to offload sensing to the 
sensor hub

Step 1 Dynamic taint tracking: 
Track app notifications for a series 
of sensor inputs

Optimized
app

Original
app

Step 0: Sensor 
traces

Taint
log

Classifier 
model

Sensor 
parameter

MobileHub system overview

MobileHub
System



Why do we need taint tracking?
• Goal: to track when a sensor value leads to 

an app notification. 
• Observing the app notifications alone is 

insufficient.
• Use taint tracking to track the sensor data 

from when it was recorded to when it was 
used by the application

10



Taint tracking example

11

void onSensorChange(sensorEvent){

X = sensorEvent.val;

Y = (X + 1) / 2;

if (Y > THRESHOLD) {

stepCounter++;

display(stepCounter);
}

}

Taint	tag

Taint	tag

Taint	Source

Explicit	Information	Flow

Implicit	Information	Flow
Taint	tag

Taint	Sink

Taint	tag



Challenge: implicit flow tracking
• Most taint tracking platforms only track 

explicit flow
• Without implicit flow tracking, we could only 

track 20% of triggers for sensing apps
• Use instrumentation to force implicit flow 

tracking
• Built on top of TaintDroid [Enck_OSDI2010]

12



Instrumentation for implicit flow tracking

13

void onSensorChange(sensorEvent){

X = sensorEvent.val;

Y = (X + 1) / 2;
tag = getTaintTag(Y);
if (Y > THRESHOLD) {

stepCounter++;
Taint(stepCounter, tag);
display(stepCounter);

}
}

Taint	tag

Taint	tag

Taint	Block

TAINT
CAPTURED

Use static analysis to identify all taint blocks and 
instrument the app binary automatically.



Step 3a Sensor hub program: 
Implement the classifier in the sensor 
hub, corresponding to the app

Step 2 Learning: Learn how 
changes in sensor values result 
in app notifications

Step 3b Application rewriting: 
Rewrite app to offload sensing to the 
sensor hub

Step 1 Dynamic taint tracking: 
Track app notifications for a series 
of sensor inputs

Optimized
app

Original
app

Step 0: Sensor 
traces

Taint
log

Classifier 
model

Sensor 
parameter

MobileHub system overview

MobileHub
System



Learning a buffer policy
• Hard to use a classifier to model the app logic
• Simply learn the statistical properties and 

distinguish between idle and active periods

15

Trigger 

Time

ActiveIdle
Label



Goal: find a proper buffer size
• Predict active and idle periods
• Reduce the number of notification delays

16

Trigger 

Time

Buffer Buffer

Less energy 
saving

More energy saving 
but notification delay

Buffer



Step 3a Sensor hub program: 
Implement the classifier in the sensor 
hub, corresponding to the app

Step 2 Learning: Learn how 
changes in sensor values result 
in app notifications

Step 3b Application rewriting: 
Rewrite app to offload sensing to the 
sensor hub

Step 1 Dynamic taint tracking: 
Track app notifications for a series 
of sensor inputs

Optimized
app

Original
app

Step 0: Sensor 
traces

Taint
log

Classifier 
model

Sensor 
parameter

MobileHub system overview

MobileHub
System



Implementation
• Implemented in Android
– Taint tracking system
– Interface with sensor hub
– App binary rewriter

• Prototype
– Implemented classifier on 

sensor hub

18



Evaluation
• Does the prototype work?

• Does MobileHub improve power 
consumption on real traces?

• Does MobileHub work for a large number of 
apps?

19



Prototype measurement

20



Evaluation using real sensor traces

• Trace collection from 21 participants
– 10 traces for sleeping, driving, and daily life
– 5 traces for other activities

• Downloaded 20 apps from Google Play

21



22

Name Google	Play	Store	ID Task Sensor

nWalk pl.rork.nWalk Step	counting Accelerometer

pedometer	 bagi.levente.pedometer Step	counting	 Accelerometer	
stepcounter Stepcounter.Step Step	counting	 Accelerometer	
appsone net.appsone.android.pedometer Step	counting	 Accelerometer	
virtic jp.virtic.apps.WidgetManpok Step	counting	 Accelerometer	
walking	 cha.health.walking Step	counting	 Accelerometer	
lodecode com.lodecode.metaldetector Metal	detector	 Magnetometer	
imkurt com.imkurt.metaldetector Metal	detector	 Magnetometer	
tdt com.tdt.magneticfielddetector Metal	detector	 Magnetometer	
multunus com.multunus.falldetector Fall	detector	 Accelerometer	
iter com.iter.falldetector Fall	detector	 Accelerometer	
t3lab	 it.t3lab.fallDetector	 Fall	detector	 Accelerometer	
fall	 com.fall Fall	detector	 Accelerometer	
jietusoft com.jietusoft.earthquake Earthquake	detector	 Accelerometer	
vibration	 ycl.vibrationsensor Earthquake	detector	 Orientation	
posvic cz.posvic.fitnessbar.sleeptrack Sleep	monitoring	 Gyroscope	
myway myway.project.sleepmanagement Sleep	monitoring	 Accelerometer	
driving	 jp.co.noito.Accelerometer Driver	monitoring	 Accelerometer	
motion	 com.app.accelerometer Motion	detector	 Accelerometer	
thefthead com.thefthead.appfinalsettings Theft	detector	 Accelerometer	



Trace evaluation methodology

23

• Run each app on the phone receiving 
sensor values from a trace file

• Trace file embeds the buffering policy

Power Accounting:
• Measure the power consumption of phone
• Deduct the standby power consumption



Energy improvement

24



Notification delay

App Task #Delay/#Notif
ications Max delay (s) 

nWalk Step Counting 1/3914 1.86

imkurt Fall Detection 2/142 0.98

posvic Sleep Monitor 1/36 0.64

thefthead Anti-theft 6/65 2.80

25

• Notification is delayed by at least 0.5s



Conclusion
• Design and implement MobileHub that rewrites 

application to leverage sensor hub without 
programmer effort

• Experiment with 20 sensing apps, and reduce 
power consumption by 74% in median

• MobileHub delays 1.5% app notifications across 
all apps on average

26



Thank you!

27

haichen@cs.washington.edu



Android	Binder

Sensor	Hub	
Service

Comm.	ManagerSensor	
Hub

Sensor	Distributor	

App

Hub	
Binder

Sensor	
Listener

App

Hub	
Binder

Sensor	
Listener

Sensor Hub Service

28



Dynamic vs static buffer

29


