Enhancing Mobile Apps to Use Sensor
Hubs without Programmer Effort

Haichen Shen, Aruna Balasubramanian,
Anthony LaMarca, David Wetherall

. ,. 4
S8 \ ISTC (=
2| —|—@\ g q\\ Stony Brook |
'06({° , | _@Qg’ UnlverS].ty Intel Science and Technology Center for

Stience & € Pervasive Computing

Continuous sensing apps

\ 4
Step Counting Fall Detection Driver Monitor ~ Theft Detection

//@

Healthcare apps: Lifestyle monitoring: Participatory sensing:
Ambulation BeWell, Acoustic MobiPerf

2

But it drains the battery

A Google User - August 22, 2012 - Samsung Galaxy Nexus with version 3.0.120704r635 co
* % Destroys your battery

Appears to be little more than a tool to see how much time you spend talking to other people.
Assumes you are asleep if you're not using your phone. Basic reports and absolutely abuses
your battery. Uninstalled.

A Google User - August 27, 2012 - Samsung Galaxy Tab with version 3.0.120704r635 co
* Battery Issue
Sucks up all your battery

A Google User - August 22, 2012 - Droid Bionic with version 3.0.120704r635 co
* % Major battery and memory hog

This app does what |t says but it alone was consumlng about 10% of my battery and about half

Problem CPU frequently wakes up to process

sensor data

Sensor hub: low power processor

1 Merrifield

New microarchitecture;

Intel XMM 7260

Intel Merrifield

>

Tiva“C Series
ARM*MCUs

i3 Texas
INSTRUMENTS

TI's Tiva

€M7/

~1.5 mW at 2MHz

Apple M7

Existing approaches make it hard
to leverage sensor hub

APIs Hardware SDK

* Provided by software * Provided by hardware
company, e.g. Apple, manufacturer, e.g. Tl
Google TivaWare

v Easy to program v" Full control of sensor

X Only support a set of hub
pre-defined events X Compatibility

X Require programmer X Require programmer
effort effort

MobileHub: leverage sensor hub
without programmer effort

% & Optimized app: Same semantics,
but more energy efficient

Analyze app and
rewrite binary

MobileHub example

Steps: |Fal8e
V) Notification
[Sensor { cPu | { Display _

000000
Trigger

MobileHub No change to app semantics

CPU |

[Sensor ‘ '[Dlsplay

Challenge: How does MobileHub know when the
application needs to be triggered?

DDDDDD{

MobileHub system overview

N
Step 0: Sensor

traces app

I

Original Optimized

app

:

Step 1 Dynamic taint tracking:

Step 3b Application rewriting:

Track app notifications for a series Rewrite app to offload sensing to the
of sensor inputs sensor hub
Taint Sensor MobileHub
log parameter SyStem
A 4

Step 2 Learning: Learn how
changes in sensor values result

in app notifications

Step 3a Sensor hub program:

= 4| Implement the classifier in the sensor
Classifiet| b corresponding to the app

model

MobileHub system overview

N\
Original Optimized

Step 0: Sensor
traces
Step 3b Application rewriting:
Rewrite app to offload sensing to the
sensor hub

Step 1 Dynamic taint tracking:
Track app notifications for a series
of sensor inputs

Step 2 Learning: Learn how
changes in sensor values result
in app notifications

Step 3a Sensor hub program:
Implement the classifier in the sensor
hub, corresponding to the app

Why do we need taint tracking?

e Goal: to track when a sensor value leads to
an app notification.

» Observing the app notifications alone is
insufficient.

* Use taint tracking to track the sensor data
from when it was recorded to when it was
used by the application

Taint tracking example

Taint tag
p Taint Source
Tainttag | X = sensorEvent.val; ™

void onSensorChange

< '\) .
Tainttag | Y = (X + 1) / 2; Explicit Information Flow

=

if (Y > THRESHOLD) { —

—> Implicit Information Flow
Taint tag stepCounter++;

——

display(stepCountery; - e
}< —— —> Taint Sink
}

14883

11

Challenge: implicit flow tracking

* Most taint tracking platforms only track
explicit flow

« Without implicit flow tracking, we could only
track 20% of triggers for sensing apps

» Use instrumentation to force implicit flow

tracking
« Built on top of TaintDroid [Enck_OSDI2010]

Instrumentation for implicit flow tracking

void onSensorChange(sensorEvent){

Tainttag | X = sensorEvent.val;

Tainttag | Y = (X + 1) / 2;
tag = getTaintTag(Y);
if (Y > THRESHOLD) { —

stepCounter++; .
Taint(stepCounter, tag); Taint Block

<:gE§Elay(stepCdﬁﬁ?§b ;
) TAINT ~ —

) CAPTURED

Use static analysis to identify all taint blocks and
iInstrument the app binary automatically.

MobileHub system overview

N\
Original Optimized

Step 0: Sensor
traces
Step 3b Application rewriting:
Rewrite app to offload sensing to the
sensor hub

Step 1 Dynamic taint tracking:
Track app notifications for a series
of sensor inputs

Step 2 Learning: Learn how
changes in sensor values result
in app notifications

Step 3a Sensor hub program:
Implement the classifier in the sensor
hub, corresponding to the app

Learning a buffer policy

« Hard to use a classifier to model the app logic

« Simply learn the statistical properties and
distinguish between idle and active periods

] Label f—0_ _
Idle ActiveTEgelr

A A

000000000000000000000

4y ¢ A

Time

15

Goal: find a proper buffer size

* Predict active and idle periods
* Reduce the number of notification delays

Less energy More energy saving
saving | but notification delay
— = Trigger —~
Buffer Buffer @ Buffer

[a]a]u]alu]s S]a]u]s]a]u]s]a]s]s S[s[aE]w

4y ¢ A

>
Time

16

MobileHub system overview

N
& Original Optimized
app app

l

Step 3b Application rewriting:
Rewrite app to offload sensing to the
sensor hub

MobileHub
System

Step 3a Sensor hub program:
*| Implement the classifier in the sensor
hub, corresponding to the app

Implementation

* Implemented in Android
— Taint tracking system

— Interface with sensor hub
— App binary rewriter

* Prototype

— Implemented classifier on
sensor hub

18

Evaluation

* Does the prototype work?

* Does MobileHub improve power
consumption on real traces”?

* Does MobileHub work for a large number of
apps?

Prototype measurement

100

(00)
o

(@)
o

N
o

N
o

Energy Consumption (J)

MobileHub-
B \cirumented App

1 Unmodified App

Pedometer

Evaluation using real sensor traces

* Trace collection from 21 participants

— 10 traces for sleeping, driving, and dalily life
— 5 traces for other activities

* Downloaded 20 apps from Google Play

Name

Google Play Store ID

Task

Sensor

nWalk
pedometer
stepcounter
appsone
virtic

walking

pl.rork.nWalk
bagi.levente.pedometer
Stepcounter.Step
net.appsone.android.pedometer
jp.virtic.apps.WidgetManpok
cha.health.walking

Step counting
Step counting
Step counting
Step counting
Step counting

Step counting

Accelerometer
Accelerometer
Accelerometer
Accelerometer
Accelerometer

Accelerometer

lodecode
imkurt

tdt

com.lodecode.metaldetector
com.imkurt.metaldetector

com.tdt.magneticfielddetector

Metal detector
Metal detector
Metal detector

Magnetometer
Magnetometer

Magnetometer

multunus
iter

t3lab

fall

com.multunus.falldetector
com.iter.falldetector
it.t3lab.fallDetector

com.fall

Fall detector
Fall detector
Fall detector

Fall detector

Accelerometer
Accelerometer
Accelerometer

Accelerometer

jietusoft

vibration

com.jietusoft.earthquake

ycl.vibrationsensor

Earthquake detector
Earthquake detector

Accelerometer

Orientation

posvic

myway

cz.posvic.fitnessbar.sleeptrack

myway.project.sleepmanagement

Sleep monitoring

Sleep monitoring

Gyroscope

Accelerometer

driving
motion
thefthead

jp.co.noito.Accelerometer

com.app.accelerometer
com.thefthead.appfinalsettings

Driver monitoring

Motion detector
Theft detector

Accelerometer

Accelerometer
DD

Accelerometer

Trace evaluation methodology

* Run each app on the phone receiving
sensor values from a trace file

* Trace file embeds the buffering policy

Power Accounting:
* Measure the power consumption of phone
* Deduct the standby power consumption

Energy improvement

- | P
-

i m m m 9p023p0|
B DIASOd

- peayyau]
i uoiow

- | | | BUIALIP

: | | | yosny|

i | | | uonelqgin
i | | | e}
-

- | | | 191

i | | | DIMIA

- | | | suojsdde

- w w Jl2junod dajs

J1919wopad

- w |emu
|

o o o o o o
_ﬂl_u oo 6 4 2

(%) obejusouad juswanoidwi] Abiaug

Notification delay

* Notification is delayed by at least 0.5s

#Dglay/#Notif Max delay (s)
ications
n\Walk Step Counting 1/3914 1.86
imkurt Fall Detection 2/142 0.98
POSVIC Sleep Monitor 1/36 0.64
thefthead Anti-theft 6/65 2.80

25

Conclusion

* Design and implement MobileHub that rewrites
application to leverage sensor hub without

orogrammer effort

* Experiment with 20 sensing apps, and reduce

power consumption by 74% in median

* MobileHub delays 1.5% app notifications across
all apps on average

Thank you!

haichen@cs.washington.edu

Sensor Hub Service

Sensor
Hub

[Sensor Hub \

Service

e e e e e

4)
App

p ————

Sensor
 Listener

h 4

()
App

p ——— -

Sensor
 Listener
—-— -—

&

A 4

[Android Binder

]

28

Dynamic vs static buffer

80 | I ! !
70k SN . X Static Buffer ||
' + MobileHub

Percentage of delayed notifications
S
o
I

Static/Average Buffer Size

