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Wearable computing
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???

à more data



When computer vision meets wearable

Consumer Manufacturing Public Safety

“That drink will get you to 
2800 calories for today”

“I last saw your keys in the 
store room”

“Remind Tom of the party”

“You’re on page 263 of this 
book”
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Deep learning makes vision work

Recognition Task face scene* object*

Accuracy 97% 88% 92%

Compute/frame (FLOPs) 1.00G 30.9G 39.3G

Do we have enough resources 
to run deep learning?
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Compute@1-30fps (FLOPS) 1-30G 30-900G 40G-1.2T

* top-5 accuracy is shown in the table

But...



Resource usage for continuous vision

Imager Processor Radio

Omnivision
OV2740
90mW

Tegra K1 GPU
290GOPS@10W
= 34pJ/OP

Qualcomm SD810 LTE
>800mW
Atheros 802.11 a/g
15Mbps@700mW= 47nJ/b

Cloud

Amazon EC2
CPU   c4.large      2x400GFLOPS   $0.1/h
GPU   g2.2xlarge  2.3TFLOPS        $0.65/h

5Huge gap between workload and budget

Budget
Device power Cloud cost

30% of 10Wh for 10h = 300mW $10 person/year

Workload Deep learning 300GFLOPS @ 30GFLOPs/frame, 10fps

Compute 
power 9GFLOPS 3.5GFLOPS (GPU) / 8GFLOPS (CPU)



Neural network

(c)			convolution
(f)				fully	connect
(m)		max	pool
(r)				relu
(s)			softmax
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Neural network ≈ matrix multiplications
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x x x

Low rank approximation
(Y. Kim, et al. 2016)

x

Matrix sparsification
(S. Han, et al. 2015)

(c)			convolution
(f)				fully	connect
(m)		max	pool
(r)				relu
(s)			softmax
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Architectural changes
(J. Ba, et al. 2014)



Managing the approx. / resource trade-off

‣Detailed characterization of the approximation / resource trade-
off for many optimizations

‣ Two new optimizations for streaming, multi-application settings

‣New scheduling problem, Approximate Model Scheduling, with 
a heuristic solution

8



Outline

‣Detailed characterization of the approximation / resource trade-
off for many optimizations

‣ Two new optimizations for streaming, multi-application settings

‣New scheduling problem, Approximate Model Scheduling, with 
a heuristic solution
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Substantially reduce 
memory use with 
gradual accuracy 
loss



45 50 55 60 65 70 75 80 85
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Energy / accuracy trade-off

Wifi xmit cost 
(0.5J)

LTE xmit cost 
(0.9J)

Compute energy 
budget (2.3J)
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Always execute locally

Can execute locally 
under energy budget

Exceed energy budget 
when execute locally

energy budget = total energy / total time(10h) / requests per second(1 req/sec)

Nvidia Jetson TK1



Outline

‣Detailed characterization of the approximation / resource trade-
off for many optimizations

‣ Two new optimizations for streaming, multi-application settings
‣ Specialization
‣ Model sharing

‣New scheduling problem, Approximate Model Scheduling, with 
a heuristic solution
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Exploiting stream locality by specialization

• Standard deep neural network recognizes 4000 people
• Most of videos are dominated by less than 10 faces over minutes
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Timeline

Produce more compact models for skewed classes



Specialization runtime
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Better resource/accuracy trade-off
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Outline

‣Detailed characterization of the approximation / resource trade-
off for many optimizations

‣ Two new optimizations for streaming, multi-application settings

‣New scheduling problem, Approximate Model Scheduling, with 
a heuristic solution
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Energy 14

Approximate model scheduling
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Mobile 
device

Cloud

Model 
Pool

memory

energy

cost

Accuracy

Task 1

8 2 2
model 1 (90%) model 2 (80%)

5 1 1

Task 2

9 3 3
model 3 (80%) model 4 (70%)

6 2 2

Memory 10

Cost 14

Goal: maximize the 
overall accuracy



Approximate model scheduling
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Mobile 
device

Cloud

Model 
Pool

memory

energy

cost

Accuracy

Requests:
1. task 1 
2. task 2 
3. task 1 
4. task 1 
5. task 2

Task 1

8 2 2
model 1 (90%) model 2 (80%)

5 1 1

Task 2

9 3 3
model 3 (80%) model 4 (70%)

6 2 2

Energy 14 Memory 10

Cost 14 à cloud, model 1
à device, model 4
à cloud, model 1
à cloud, model 2
à device, model 4

model 4

model 1 model 1 m2

model 4

1 2 3 4 5

Packing problem



Approximate model scheduling
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Mobile 
device

Cloud

Model 
Pool

Accuracy

Requests:
1. task 1 à cloud, model 1
2. task 2 à device, model 4
3. task 1 à cloud, model 1
4. task 1 à cloud, model 2
5. task 2 à device, model 4
6. task 1

Energy 14 Memory 10

Cost 14

model 4

model 2

memory

energy

cost

Task 1

8 2 2
model 1 (90%) model 2 (80%)

5 1 1

Task 2

9 3 3
model 3 (80%) model 4 (70%)

6 2 2

model 4

model 1 model 1

1 2 3

Paging problem

m2

model 4

4 5



Approximate model scheduling

• Packing problem: pick versions that satisfy energy/cost budgets
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No known optimal online algorithms
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Heuristic scheduler

• Estimate future resource use and compute the budget for each 
request

• Account for paging cost to reduce oscillations

• Use increasingly more accurate versions of more heavily used 
models
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Trace-driven evaluation
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Run out of battery

Lose connectivity



development time

MCDNN framework
compiler

input	 type
model	 schema

training/validation	data

cloud	runtime
scheduler
data	router
profiler

apps

input input

classes
classes

trained	
model	
catalog

device	runtime
scheduler
data	router

clouddevice

run	time



development time

MCDNN framework
compiler

input	 type
model	 schema

training/validation	data

cloud	runtime
scheduler
data	router
profiler

apps

input input

classes
classes

trained	
model	
catalog

device	runtime
scheduler
data	router

specializer

statsspecialized	models

clouddevice

specialization	time

run	time



Conclusion

• MCDNN makes efficient trade-offs between resource use and 
accuracy
• Formulate the approximate model scheduling problem and 

devise a heuristic algorithm
• Design a generic approximation-based execution framework 

for continuous mobile vision
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Thank you! Questions?



Backup	Slides
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Cloud cost / accuracy trade-off
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cloud GPU latency 
budget (9.7ms)
@ $10/yr, 1 request/s
@ AWS g2.2xlarge

cloud GPU latency 
budget (582ms)
@ $10/yr, 1 request/min
@ AWS g2.2xlarge

cloud CPU latency 
budget (7645ms)
@ $10/yr, 1 request/min
@ AWS c4.large
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latency budget = cost budget / cost per hour / #requests



Model sharing
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input
intermediate

values

face 
ID

race age gender …

router
input

(a) (b)

model-fragment cache



Dynamically-sized caching scheme

31


