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Wearable computing = more data



When computer vision meets wearable

“That drink will get you to
2800 calories for today”

“l last saw your keys in the
store room”

“Remind Tom of the party”

“You’re on page 263 of this
book”

‘ Consumer

Reducing human error in pharmaceutical
manufacturing

Few experts would dispute that human error is the cause of
most pharmaceutical manufacturing failures. Some estimate %

it to be as high as 80 percent! I—’

While there are many types of workflow software available, those which allow embedded workflow
design are the most effective. These enable seamless integration of document, industrial process,
human activity, and operations management workflow via a single user interface. Having to leave
one application and open one or more others to resolve any situation, jeopardizes productivity

and timeliness, it also makes the process more susceptible to error.

Manufacturing

GOVERNING PN

{E STATES AND LOCALITIES

PUBLIC SAFETY & JUSTICE

Can Body Cameras Really Reduce
Ferguson Police's Use of Force?

Ferguson police are the latest of more than 1,000 departments to
wear body cameras, which are proven to reduce officers' use of
force and citizens' complaints against cops.

BY TOD NEWCOMBE | SEPTEMBER 4, 2014

Public Safety
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Deep learning makes vision work
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IMAGENET
Accuracy Rate

#Traditional CV ® Deep Learning
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But...

Recognition Task face scene*  object”

Accuracy 97 % 88% 92%

Compute/frame (FLOPS) 1.00G 30.9G 39.3G

2010 2011 2012 2013 2014 2015

Compute@1-30fps (FLOPS)  1-30G  30-900G 40G-1.2T

Do we have enough resources

to run deep learning?

* top-5 accuracy is shown in the table




Resource usage for continuous vision

o Qualcomm SD810 LTE Amazon EC2
Omnivision ~ TegraKi GPU >800mW CPU cdlarge 2x400GFLOPS $0.1/h
OoVv2740 290GOPS@10W Atheros 802.11 a/g GPU g2.2xlarge 2.3TFLOPS $0.65/h
90mwW = 34pJ/OP 15Mbps@700mW=47ndJ/b

4 )

l: Imager Processor Radio

1\ J
Workload Deep learning 300GFLOPS @ 30GFLOPs/frame, 10fps
Device power Cloud cost
Budget
30% of 10Wh for 10h = 300mW $10 person/year
Compute 9GFLOPS 3.5GFLOPS (GPU) / 8GFLOPS (CPU)
power

Huge gap between workload and budget :



Neural network

classes +

(m—(_c) Sscores
(D

(O

P ©

(D

(O

imgg

imgg

imgs (c) convolution
(f) fully connect
(m) max pool
(r) relu
(s) softmax



Neural network ~ matrix multiplications

classes +

G scores

N x

Low rank approximation
(Y. Kim, et al. 2016)

(O
8% © classes + ce o o e ¢ e e e
scores ce L e .
e o o0 X e o e o o

(c) convolution o > o .
(f) fully connect ° oo o oo ce oo
(m) max pool ces o

(r) relu imgg

(s) softmax imge _ Matrix sparsification
imgs Architectural changes (S. Han, et al. 2015)

(J. Ba, et al. 2014)




Managing the approx. / resource trade-off

» Detailed characterization of the approximation / resource trade-
off for many optimizations

» TwWo new optimizations for streaming, multi-application settings

» New scheduling problem, Approximate Model Scheduling, with
a heuristic solution



Outline

» Detailed characterization of the approximation / resource trade-
off for many optimizations



Memory / accuracy trade-off
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memory (MB)
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ON

e Obj
e Scenel]
e Face
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accuracy (%)
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Memory / accuracy trade-off

memory (MB)

10° —

10t

e Obj

e Scenel]

e Face

30 40 50 o660 70 80
accuracy (%)

90 100

Substantially reduce
memory use with
gradual accuracy
loss



Energy / accuracy trade-off

10

e Obj(Exec)
e Scene(Exec)
Exceed energy budget  g|| e Face(Exec)

when execute locally ¥~

Nvidia Jetson TK1

Compute energy

Can execute locally q— — budget (2.3J)

under energy budget g il el ( TE
I Xmit cost

____________ -~ (09J)

' —~~ Wifi xmit cost
80 85 (g5

Always execute locally

75
accuracy (%)

energy budget = total energy / total time(10h) / requests per second(1 reqg/sec) 12



Outline

» TwWo new optimizations for streaming, multi-application settings
» Specialization
» Model sharing



Exploiting stream locality by specialization

« Standard deep neural network recognizes 4000 people
* Most of videos are dominated by less than 10 faces over minutes

>

Timeline

S

Produce more compact models for skewed classes

14



Specialization runtime

class
class
full model
full model check
for
) other T
;cass
Z compact
_ model
input

input
(with skewed distribution)



accuracy (%)

Better resource/accuracy trade-off

100 . 10t .
I Full model [ I Full model ]
B Compact model [ Bl Compact model|]
Compact model [ Compact model|]
80t B spec. (7cls) B o (7 cls)
10°
60} =
>
>
)
C
40} v
107! -
20}
0 L 1072 .
Face Object Scene Face Object Scene
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No specialization Specialization

MOVIECLIPS.com MOVIECLIPS.com

L 25 1 1 1 1 I 1 L 25 1 1 1 1 I 1
é 20 B é 20 | =
% 15 | — % 15 | —
; 10 — ; 10 —
E 5| . E 5| .
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100 I I I I I 1 100 I I I I I 1
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g 60 - g 60 | .
s Mr ] s Mr ]
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Outline

» New scheduling problem, Approximate Model Scheduling, with
a heuristic solution



Approximate model scheduling

Task 1 Task 2 . mermory
Model model 1 (90%) model 2 (80%) model 3 (80%) model 4 (70%) . energy
POO' n.Z ..1 n.3 H.z cost
Mobile
Hevica Energy 14 Memory 10
Cloud Cost 14

T Goal: maximize the
Accuracy

overall accuracy

19



Approximate model scheduling

Task 1 Task 2 . mermory
Moae| model 1 (90%) model 2 (80%) model 3 (80%)  model 4 (70%) . energy
ool s 2] BEE OBREE cost

I\/Iobile model 4 — model 4

device Memory 10
Cloud Packing problem 1

task 2 = device, model 4

. task 1 - cloud, model 1
A . task 1 = cloud, model 2
ccuracy . task 2 > device, model 4
> 20

1 2 3 4 5

oA W N




Approximate model scheduling

Task 1 Task 2 . mermory
Model model 1 (90%) model 2 (80%) model 3 (80%) model 4 ( 70%) . energy
Pool n . 2 n . 3 cost

I\/Iobile model 4 — mo_deI:
device

Requests:
task 1 =2

1 ,
2.
3.
A 4,
ccuracy 5. task 2> dewce model 4
p | 6. task 21

1 2 3 4 5




Approximate model scheduling

« Packing problem: pick versions that satisfy energy/cost budgets
z ei Xy < E,Z cixiyy < C (xit,xip € [0,1], xi¢ - x;, = 0)
t t
« Paging problem: pick versions that fit in memory

n
V1< tST,z Sixip < S
=1

« Goal: maximize the accuracy

mxaxztziai (xit + x{p)
No known optimal online algorithms

22



Heuristic scheduler

 Estimate future resource use and compute the budget for each
request

« Accountfor paging cost to reduce oscillations

« Use increasingly more accurate versions of more heavily used
models



Trace-driven evaluation

Connectivity
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MCDNN framework

input type
model schema 4 combiler trained
training/validation data P model

development time catalog

run time
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MCDNN framework

input type
model schema

training/validation data

development time

____________________________ ===

run time

input

Y

device runtime

scheduler
data router

classes

UUUU

weV|ce

: trained
» compiler model
catalog
» specializer [«
specialized models stats
v
input cloud runtime
scheduler )
data router
" classes profiler
cloud



Conclusion

« MCDNN makes efficient trade-offs between resource use and
accuracy

* Formulate the approximate model scheduling problem and
devise a heuristic algorithm

* Design a generic approximation-based execution framework
for continuous mobile vision

Thank you! Questions?

27
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Cloud cost / accuracy trade-off

10° ¢ . . . . cloud CPU latency
| e Obj(Cloud GPU) budget (7645ms)
| a Obj(Cloud CPU) @ $10/yr, 1 request/min
103 L| ® Scene(Cloud GPU) @ AWS c4.large
) { a Scene(Cloud CPU)
g . A: cloud GPU latency
> 102 | | budget (582ms)
- A § @ $10/yr, 1 request/min
% o d . i @ AWS g2.2xlarge
—_— PR ,
10t b = = -' ----------- R - e -- '4—\ cloud GPU latency
o © e Face(Cloud GPU)[] budget (9.7ms)
. » Face(Cloud CPU)|; @ $10/yr, 1 request/s
10 ; ' '

45 50 55 60 6IS 7IO 7I5 8IO 85 @ AWS g2.2xlarge

accuracy (%)

latency budget = cost budget/ cost per hour / #requests



Model sharing

face
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Dynamically-sized caching scheme

fraction of requests served
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