
Enhancing Mobile Apps To Use Sensor Hubs
Without Programmer Effort

Haichen Shen, Aruna Balasubramanian†, Anthony LaMarca*, David Wetherall
University of Washington, †Stony Brook University, *Intel

ABSTRACT
Always-on continuous sensing apps drain the battery quickly
because they prevent the main processor from sleeping. In-
stead, sensor hub hardware, available in many smartphones
today, can run continuous sensing at lower power while keep-
ing the main processor idle. However, developers have to
divide functionality between the main processor and the sen-
sor hub. We implement MobileHub, a system that automati-
cally rewrites applications to leverage the sensor hub without
additional programming effort. MobileHub uses a combina-
tion of dynamic taint tracking and machine learning to learn
when it is safe to leverage the sensor hub without affecting
application semantics. We implement MobileHub in Android
and prototype a sensor hub on a 8-bit AVR micro-controller.
We experiment with 20 applications from Google Play. Our
evaluation shows that MobileHub significantly reduces power
consumption for continuous sensing apps.

Author Keywords
Mobile sensing; energy-efficiency; sensor hub; dynamic taint
tracking; machine learning

ACM Classification Keywords
C.5.0 Computer System Implementation: General

INTRODUCTION
Today’s smartphones provide a rich sensing platform that de-
velopers leverage to enable tens of thousands of mobile appli-
cations. Many of these applications require continuous sensing
and monitoring for tasks ranging from simple step counting to
more complex fall detection, sleep apnea diagnoses, dangerous
driver monitoring and others.

Unfortunately, continuous sensing applications are power hun-
gry. Interestingly, it is neither the sensors nor the computation
that make these applications battery drainers. Instead, the
main processor needs to be powered on frequently to collect
sensor samples, in-turn increasing the power consumption [33,
28, 34].

Hardware manufacturers recognize that supporting low-power
continuous sensing is crucial. To this end, companies such
as Texas Instruments (TI) [31], Intel [29], and Apple [2], are
embedding a low power micro-controller called a sensor hub

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UbiComp ’15, September 7-11, 2015, Osaka, Japan.
Copyright 2015 © ACM 978-1-4503-3574-4/15/09...$15.00.
http://dx.doi.org/10.1145/2750858.2804260

in their smartphones. The sensor hub continuously collects
sensor data keeping the higher power main processor idle.

In practice, however, sensor hubs fail to deliver on their power
efficiency promise. The problem is in the difficulty in program-
ming them. For example, to leverage the sensor hub for a fall
detection app, the developer not only needs to write the main
application, but also needs to program the sensor hub to sense
and notify the main application when a fall is detected. Two
approaches have been used to make it easier for developers to
program the sensor hub: APIs and hardware SDK.

In the APIs approach [5, 1], a set of important sensor infer-
ence functions are exported via high level APIs to the app
developers. The problem is that the APIs only support a set of
pre-defined events or activities such as step counting. Today, a
fall detection application cannot use any of the existing APIs
to leverage the sensor hub. It is possible that sensor hub APIs
will stabilize, but this is unlikely to happen for many years.
Consider how much location APIs have evolved since the Java
Location API (JSR 179) was introduced in 2003. Sensor hubs
themselves have regularly been part of phones since 2011, but
it is only in 2014 that a small set of sensor APIs are aligning
around common functionality. In the meanwhile, ambitious
sensing applications such as BeWell [3] cannot leverage the
sensor hub for power efficiency.

In the hardware SDK approach, the developer is provided with
specialized tools to leverage the sensor hub. For example, TI
provides a proprietary TivaWare Sensor Library [10] to allow
developers access to functionality not exposed by software
APIs. Similarly, Intel provides a proprietary Context Sensing
SDK [4]. However, applications developed in one vendor’s
environment will not work in another’s and vice versa. In
other words, not only does the developer need to learn a new
software/SDK, but she needs to do it for potentially each
hardware platform.

We explore a third approach. We present MobileHub, a system
that rewrites applications to leverage the sensor hub without
any programming effort. Our goal is to keep the main pro-
cessor in a sleep state while the sensor hub reads and buffers
sensor readings. By then delivering the buffered readings, we
allow the host to process an entire batch of sensor data for
little more than the cost of a single reading.

The core of our system is about learning when it is safe to
buffer sensor readings without altering the application seman-
tics. Our key insight is that typical mobile sensing apps have
an “inner loop” that reads sensor data at a high-rate, until a
specific event occurs. For example, a fall detection applica-
tion reads accelerometer data at a high rate, until a user falls
down. At that point, an “outer loop” takes over, resulting in an

mailto:permissions@acm.org
http://dx.doi.org/10.1145/2750858.2804260

application notification, such as raising an alarm that the user
has fallen down. MobileHub learns, to the first approximation,
the statistical characteristics of sensor values that cause the
application notification.

To determine when a sensor reading triggers a notification,
we use dynamic taint tracking [20, 13]. This technique tracks
the flow of sensor data during runtime to determine precisely
when the sensor data leads to a particular application behavior.
MobileHub then learns the statistical properties of the sensor
data that does not cause any application notification. Using
this learning model, MobileHub buffers sensor values at the
sensor hub as long as the classifier predicts that the sensor
data will not trigger any notification; else, MobileHub wakes
up the application and passes the buffered sensor data to it.
Eventually, all sensor values reach the application; we are
simply adjusting the delivery schedule to optimize power.

We implement MobileHub on Android and prototype a sen-
sor hub using an 8-bit Atmel micro-controller. We evaluate
the performance of MobileHub using 20 applications that
we download from Google Play. The applications span 4
different sensors—accelerometer, magnetometer, gyroscope,
and orientation, and span diverse tasks—step counting, fall
detection, sleep monitoring, driver monitoring, earthquake
detection, motion detection, and metal detection. For each
application, MobileHub analyzes the application using taint
tracking, learns a classifier, and rewrites the binary. Mobile-
Hub also implements the classifier in the sensor hub firmware.
We conduct one end-to-end lab experiment as a proof of con-
cept, and conduct emulation experiments driven by user-traces
for a more extensive evaluation.

In our end-to-end experiment, MobileHub improved power
consumption of a Pedometer app by 72%. In the emulation
experiment, MobileHub improved the power consumption for
17 of the 20 applications. Three of the applications could
not benefit from MobileHub, or for that matter cannot benefit
from sensor hubs at all, without changing their semantics.
For the remaining applications, except the metal detection
apps, MobileHub reduced power consumption by an average
of 70%. MobileHub reduced power consumption for the metal
detection apps by an average of 33%.

MobileHub was able to get the power benefits with practically
no change to the application semantics. By semantics, we
mean that the application made the same sounds, notifications,
and vibrations as the original and on a timeline that was nearly
identical. MobileHub delayed the timing of the application
notification a small number of times: 1.5% of the time across
all applications on an average. Even when MobileHub de-
layed application notification, the maximum delay induced by
MobileHub was less than 1 second for 80% of the applications.

BACKGROUND

Sensor Hubs
Hardware manufacturers are increasingly embedding a sensor
hub in their phones [31, 29, 2] to reduce power consumption
of continuous sensing tasks. Figure 1 shows an example sen-
sor hub architecture. Sensor hubs can perform continuous
sensing while drawing a fraction of the power compared to

!"#$%&
#%'($%))*$+

!"
#$

%&'
()
%&*
+,

&&

,%-(+./0+ 1*'-%$+,23+

!"#$&

4##*)+

56$%+

7/1+

(*89+

34$%+

-./012/3&4567685839:&-;/6&39//.3&

1*
'-
%$
+"'
(*
$:4

#*
+

8
";
;)
*<

4$
*+

,%-(+
=99+
,%-(+
=99+
,%-(+
=99+

>?@ABB+

Figure 1. A typical sensor hub architecture.

MobileHub
System

Step%3a%%Sensor%Hub%Rewri2ng:%
Implement(the(classifier(in(the(sensor(
hub,(corresponding(to(the(app(

Step%2%Learning:%Learn(how(change(
in(sensor(values(result(in(app(
no9fica9ons(

Step%3b%Applica2on%rewri2ng:%Rewrite(
app(to(offload(sensing(to(the(sensor(hub(

Step%1%Dynamic%taint%tracking:%Track(
app(no9fica9ons(for(a(series(of(
sensor(inputs(

MobileHub@Modified%
%app%

Downloaded%%
app%Step(0:(Sensor(

traces(

Taint(
log(

Classifier((
model(

Sensor(
parameter(

Figure 2. The MobileHub architecture

the main processor. For example, the AVR micro-controller
in our prototype runs at 2MHz and draws less than 1mA of
current [18], two orders of magnitude less compared to the
main processor. The sensor values are then written to the host
processor via a UART connection.

MobileHub design decisions
The problem with sensor hubs is in the difficulty in program-
ming them. We design MobileHub to leverage the sensor
hub without additional programming effort. At a high level,
MobileHub analyzes how sensor values affect application be-
havior and then rewrites the application based on the analysis.
This can be implemented either by modifying the application
source code or the binary. We choose to directly modify the
binary that lets us evaluate existing apps even when the source
code is not available.

MobileHub is primarily designed for application developers
who would use the system as a last pass to optimize their ap-
plications. To do this, the developer provides a representative
sensor trace to drive their application; in return, they get a
MobileHub-instrumented app. When developers release new
versions of their app, we expect that they will rerun the Mobile-
Hub optimization. Since MobileHub does not require source
code, it can also be used by a third-party such as an app store,
to ensure that their offerings have been power-optimized.

ARCHITECTURE
Figure 2 shows the MobileHub architecture, comprised of a
four-step pipeline.

Step 0: Sensor Traces. The input to the MobileHub system
is a sensor trace under representative conditions. Since the

purpose of the app is known, we can reasonably expect that
such a trace can be collected. For instance, for a pedometer
app, the sensor trace is a series of accelerometer readings
under conditions of walking, running, standing, and sitting.

There are two obvious approaches to picking a proper sensor
trace: a) the developer can upload a sensor trace that capture
activities important to the app, b) alternatively we can run the
application using a canonical “day in the life” trace during
which a user performs a wide variety of typical tasks.

Step 1: Dynamic Taint Tracking (§Taint). In MobileHub,
we use dynamic taint tracking [19] to track the flow of sensor
data from when it is collected, to when it results in an applica-
tion notification. MobileHub’s taint tracker takes as input the
app and a representative sensor trace. MobileHub instruments
the app binary for taint tracking and runs the app against the
sensor trace. The result of tracking is a taint log with time-
stamped entries of each sensor reading and the application
notifications. This log is the input to the next step.

For many applications, the instrumented version of the app can
be executed without any manual intervention. But other apps
may require user input. Automating application execution is
an orthogonal research area where a lot of advances have been
made [22, 35]. In the future, MobileHub will leverage these
advances to autonomously run the instrumented application.

Step 2: Learning (§Learning). In the second step, Mobile-
Hub takes an input the taint log and learns the application
behavior. It first labels and pre-preprocesses the taint log, and
splits the data into training and testing dataset. MobileHub
then trains the classifier with a 10-fold cross validation. The
learning stage produces a simple classifier that, given a stream
of sensor data, predicts if the sensor value can be buffered
without affecting application semantics.

Step 3: Rewriting the Sensor hub and the Application
(§Implementation). In the final step, MobileHub implements
the learned classifier in the sensor hub firmware, and associates
the classifier with the application.

Finally, MobileHub rewrites the original application, so that
the application now receives either single or buffered sensor
data directly from the sensor hub. Note that the sensor in-
terface in most mobile platforms is asynchronous; i.e., the
application is built to receive multiple sensor values at the
same time. This makes our rewriting easier since the applica-
tion’s sensor interface does not need to change.
DYNAMIC TAINT TRACKING
Let’s use a canonical fall detection application as an example.
A fall detection app collects accelerometer readings, runs a
fall detection algorithm, and sends out alarms when a fall is
detected. We call the alarm an application notification. Our
goal now is to track when a sensor value leads to the applica-
tion notification. Notice that observing the application alone is
insufficient. We might observe the alarm, but without knowing
semantics, we cannot be certain that the alarm was raised in
response to the accelerometer value. Static analysis is also
not enough because it does not let us observe the application
behavior during runtime under different sensing conditions.
Instead we turn to information flow tracking [19].

void onSensorChange
(sensorEvent) {

X = sensorEvent . va l ;

Y = func t i on (X) ;

pr intToScreen (Y) ;
}

void onSensorChange
(sensorEvent) {

X = sensorEvent . va l ;
i f (X > 10) {

Y += 1 ;
}
pr intToScreen (Y) ;

}
(a) Explicit Information Flow (b) Implicit Information flow

[T]

[T]

[T] [T] [T][T]

[T]

[T]

Figure 3. Examples of explicit and implicit information flows from the
sensor source at sensorEvent.val to the sink printToScreen. The taint tag
is marked as [T]

Background: Implicit and Explicit Flow Tracking
Information flow tracking, or dynamic taint tracking, allows
us to accurately track if a program input at the source affects
the program output at the sink. In the fall detection example,
if a flow of information is detected from the accelerometer
source to the alarm notification sink, we can be sure that the
alarm was raised in response to the accelerometer reading.

There are two kinds of information flow: explicit and implicit.
Figure 3(a) shows an example of an explicit information flow
from a source to the sink. In this example, the sensor value is
the source and is associated with a taint tag T. The taint tag
propagates during an assignment, from right to left. Due to the
assignment at X , the taint tag propagates from the source to
X . The taint tag then propagates through the program as X is
assigned to other variables (in this example, to the variable Y).
At the sink, we detect an information flow from the source.

Implicit information flow, on the other hand, is the flow of
information through control flows, without any assignment
operation. Figure 3(b) shows an example of an implicit in-
formation flow. Explicit information flow tracking will not
capture the flow of information from X to Y because there is
no direct assignment.

Both explicit and implicit flow tracking is required to com-
pletely capture the flow of information. However, existing
taint tracking systems for smartphones [20, 36] do not support
implicit information flow tracking because it can cause a taint
explosion [20]. The problem is that, for sensing applications,
sensor data is often propagated through implicit flows.

MobileHub’s Taint Tracking
We borrow ideas presented in related work [16] to implement
our own implicit information flow tracking system over Taint-
Droid [20], a tool that tracks explicit information flow.

Taint Sources and Sinks. We modified TaintDroid to track
the flow of sensor data, different from the original TaintDroid
that tracked privacy-related data. The sinks are where we
capture application notifications. In our current implementa-
tion, we define an application notification to be any changes
in application behavior that causes a user-perceivable output.
Accordingly, our sinks are the network, the disk, the display,
any vibrations, and sound effects, and any taint data sent to
these sinks will be captured. Until tainted data reaches these
sinks, the taint states of variables are held in memory. In the

Applica'on* App#Rewriter# Instrumented*
Applica'on*

Sta,c#
Analysis#

TaintDroid#
explicit#flow#
tracking#

MobileHub’s Implicit Flow Tracking pipeline

Figure 4. The steps taken for implicit flow tracking in MobileHub.

1 tag = �(sensordata);
2 i f (sensordata > X) {
3 stepCounter += 1 ;

4 �(stepCounter)=�(stepCounter)�tag;

5 }

Figure 5. An example MobileHub instrumentation to track implicit
flows. The code in red is the instrumentation added by MobileHub. The
function � returns the taint tag of a variable.

future, the sinks can be extended to other events such as the
application waking up a higher power sensor.

Implicit Information Flow Tracking. Our next task is to
implement implicit information flow tracking over TaintDroid.
Our approach is to use explicit information flow tracking to
help implement implicit information flow tracking. Figure 4
shows an overview of MobileHub’s taint tracking system.

Instrumentation. Given an application binary file, we first
add some instrumentation. We start by identifying control
branches that are likely to be tainted, that we call TaintBlocks.
If we propagate the taint tag of the condition variables to each
variable inside the TaintBlock explicitly, we can capture the
implicit information flow.

For example, Figure 5 is a potential TaintBlock. The condi-
tion variable is sensordata. MobileHub adds instrumentation
for each variable inside the TaintBlock (shown in red). The
instrumentation in Line 1 retrieves the taint tag of the condi-
tion variable sensordata; � returns a variable’s taint tag. The
second instrumentation is done in Line 4, where the variable
inside the TaintBlock is associated with the taint tag of the
control variable. At runtime, if sensordata is tainted, then
stepcounter also becomes tainted using explicit information
flow; if not, the instrumentation acts as a NOOP.

Instrumentation gets more complicated for nested conditions
and method calls. MobileHub carefully tracks the tags at each
level of the nested conditions in the first case, and maintains a
global program stack in the second case. We omit details of
the more complicated instrumentation in the interest of space.

Static Analysis for Efficient Instrumentation. We have de-
scribed how our system tracks implicit information flows by
instrumenting TaintBlocks. However, it would be highly in-
efficient to instrument all control flows because that would
increase code size and slow down execution. MobileHub uses
static analysis to determine when a condition variable of a
control flow is unlikely to be tainted; MobileHub then avoids
instrumenting this control flow.

In our evaluation across 20 applications (Table 1), MobileHub
added less than 5% of code to most applications by leveraging

Inac%ve(Ac%ve((Ac%ve(

Sensor'input' S1' S2' S3' S4' S5' S6' S7' S8' S9' S10' S11' S12'

Label' nt' t' nt' nt' nt' nt' nt' nt' nt' t' nt' t'

Sensor'input' S1' S2' S3' S4' S5' S6' S7' S8' S9' S10' S11' S12'

Label' nt' t' nt' nt' nt' nt' nt' nt' nt' t' nt' t'

(a) Labeling data into trigger(t) and non-trigger (nt)

(b) Clustering into active and inactive periods for a window size of 2

Sensor'input' S1' S2' S3' S4' S5' S6' S7' S8' S9' S10' S11' S12'

Label' a' a' a' i' i' i' i' i' a' a' a' a'

(c) Expanding labels to create a training set (a: active, i: inactive)

Figure 6. An example of of how MobileHub converts the taint log into
training data.

the static analysis. Blindly instrumenting every control loop
caused the program size to balloon, in some cases more than
doubling the original size. Similarly, MobileHub’s implicit
taint tracking tracked over 80% of the sensor information
flow from the source to the sink. Explicit taint tracking only
tracked 20% of the flows. We omit showing results from the
taint tracking evaluation in the interest of space.

The instrumentation and the static analysis is completely au-
tomatic. We note that although we use TaintDroid in our
implementation, MobileHub can be built over any explicit in-
formation flow tracking tool that is designed for smartphones.

LEARNING THE BUFFERING POLICY
Again, let’s look at a fall detection application example. The
application uses a complex logic to determine when a series
of accelerometer readings indicates a fall. MobileHub does
not know this complex logic. It simply learns the statistical
properties of the accelerometer readings that does not trigger
an alarm notification.

If MobileHub’s learning indicates that the sensor data may
trigger an alarm, clearly it is unsafe to buffer the sensor values.
This is because, if buffered, the application will not process
the sensor data in time, and may not raise an alarm when the
user falls down. If MobileHub’s learning indicates that the
sensor data will not trigger an alarm, then it is safe to buffer
the sensor data. This is the core of MobileHub’s buffering
policy. We describe this is more detail below.

Labeling and Pre-processing
The input to our learning step is the taint log generated by
the taint tracking tool. The log contains information about
when a sensor value was collected and when an application
notification occurred. We convert this log into our training set.

As a first step, we mark each sensor value in the log with a
trigger or non-trigger label. A sensor value is marked with a
trigger label if an application notification occurs immediately
after the sensor value was collected. Figure 6(a) shows an
example of how the sensor values in the taint log are labeled.

The challenge is that most sensing applications are idle most
of the time as they wait for an interesting sensor event to occur.

As a result, the dataset is skewed heavily towards non-trigger
labels, making learning difficult.

To improve learning under these challenges, we expand the
labels by clustering the log into active and inactive periods. An
active period contains at least one sensor value with a trigger
label, indicating that it is not safe to buffer the sensor data. An
inactive period is one where there are no sensor values with a
trigger labels indicating that the sensor values can be buffered.

The active and inactive periods are determined using a win-
dow size. If any sensor value has a trigger label at any time
in a sliding window, we label the entire window as active;
otherwise, we label the window as inactive. Figure 6(b) shows
an example labeling for a window size of 2. The samples in
the active period are then labeled active, and samples in the
inactive period are labeled inactive as shown in Figure 6(c).

Intuitively, window size depends on the sampling interval and
the max delay in notification that the application can tolerate.
We set the window size to be:

max tolerable delay
sensor sampling interval

In our implementation, we set the maximum tolerable delay to
be 500ms for all apps.

There is an inherent trade-off between the application delay
tolerance and power savings. If we buffer aggressively, we
get higher power savings, but may delay the notification from
the application. If we buffer conservatively, we will not delay
application notification, but we reduce power savings. The
window size parameter can be tuned to choose different trade-
off points.

Classification Task and Buffering Policy
The task of our classifier now is to predict, given a series of
sensor values, if the application is in the active or inactive
period. Our buffering policy is as follows: If the classifier pre-
dicts that the application is in an inactive period, MobileHub
buffers the sensor readings; if not, then MobileHub returns the
sensor readings to the application.

MobileHub learns the classifier using the last several sensor
values as input. This mirrors application logic, as applications
often compute functions over several sensor values before
making notification decisions. For instance, many applica-
tions use simple smoothing and thresholding techniques over
a series of sensor values. Some applications implement more
sophisticated algorithms such as clustering or frequency anal-
ysis. In this case, MobileHub may not be able to learn the
logic even approximately, but it will be able to learn enough
to buffer sensor data conservatively.

Features

As a first step, we used 97 training features to learn the classi-
fier; the features including the magnitude of the last n sensor
values; the maximum, minimum and mean value over differ-
ent window sizes; the absolute difference in sensor data in
each axis, etc. Before we implement the trained classifier on
the sensor hub, we run a feature selection algorithm to select
the top 10 most effective features using a leave-one-out cross

Figure 7. MobileHub implements a sensor hub service at the user level
to interface the sensor hub with the application.

validation [40]. This reduced amount of computation required
for the sensor hub. The feature selection did not reduce the
learning accuracy appreciably.

Implementing the classifier

We first train the classifier with our labeled sensor trace. After
we have a trained classifier, we smooth the classification results
to predict the active and inactive periods. We used the Weka
platform [21] for learning the classifier.

We experimented with a standard set of learning algorithms
ranging from linear algorithms—Naive Bayes, Logistic Re-
gression, LibLinear—to non-linear algorithms— J48 Decision
trees and Random Forest. We evaluated the classifier accu-
racy for all the 20 applications we use in our evaluation (see
Table 1) against all the learning algorithms (Methodology in
§Evaluation). Our evaluation showed that Naive Bayes and
Random Forest performed consistently well in reducing both
false positives and false negatives. Implementing the Random
Forest model in a micro-controller is challenging because of
memory constraints. Instead, we use Naive Bayes in our im-
plementation and all our experiments. We omit showing the
comparison results across the different learning algorithms in
the interest of space.

Certain factors can lead to learning an inaccurate classifier.
We discuss the implications of an inaccurate classifier in
§Discussion.

IMPLEMENTATION

Sensor hub prototype
Commercial sensor hubs are already integrated into the
phone [2, 31], but are closed systems and cannot be mod-
ified. Instead, for evaluation purposes, we prototype our
own sensor hub using an 8-bit Atmel AVR micro-controller,
XMega-A3BU Xplained [8]. Figure 8 shows our prototype
setup. To the micro-controller, we add a Spark IMU sensor
(combined 3-axis accelerometer, gyroscope, and magnetome-
ter sensor) through the I2C interconnect. For convenience,
the AVR micro-controller communicates with the USB host
device by tunneling serial communication through USB [9].

For a given application, we install the corresponding classifier
function in the sensor hub firmware. This app-specific classi-
fier decides, given a sensor input, if the sensor value should
be buffered or sent to the application.

Figure 8. Sensor hub prototype.

Figure 9. End-to-end MobileHub Experiment.

Android Implementation
MobileHub is implemented as a user level service as shown
in Figure 7. The MobileHub service acts as a proxy between
the external sensor hub and the application: it interfaces with
the sensor hub to read sensor data, and with the applications
to supply the sensor data. We implement the communication
between the sensor hub and the MobileHub service using the
Physicaloid Library [6]. We implement the communication
between the MobileHub service and the application using the
Android Binder, an IPC mechanism. Because the service is at
the user level, MobileHub does not require a rooted phone.

To rewrite an app, we simply replaces the sensor calls in the
application with calls to the MobileHub service. We call this
rewritten app a MobileHub-instrumented app. We rewrite us-
ing Soot [41], a tool that provides translation bidirectionally
between the application binary (in Android Dalvik byte code)
and the Jimple intermediate language [42]. The rewriting is
done completely automatically. Currently, we sign the rewrit-
ten app using our own credentials; in the future, the application
developer could re-sign the app to preserve integrity.

End-to-end experiment
As a proof of concept, we perform an end-to-end experiment
using the set up in Figure 8 on a Galaxy Nexus phone. We
instrument pedometer, one of the 20 applications in our larger
scale evaluation (see Table 1). To emulate mobility we let the
phone be stationary for 30 seconds and manually moving it
for 30 seconds, for a total of 5 minutes.

We use the Monsoon power monitor to measure power con-
sumption of the entire unit: the phone and the sensor hub. The
power monitor samples the current drawn from the battery at
a fine-grained frequency of 5000 Hz. By design, the power
measurements include the power consumed at the sensor hub

for sensing, making buffering decisions, writing sense data to
the phone, as well the power consumed by the phone.

Power results: Figure 9 shows that the power consumption of
the MobileHub-instrumented app was only 22J compared to
84J when using the default app. MobileHub is able to keep
the CPU idle for long periods of time, leading to the reduction
in power consumption.

Sensor Hub micro-benchmarks: During the experiment, the
sensor hub power consumption was 0.55J, which is only
2.5% of the total power consumption of the MobileHub-
instrumented app. We also found that the time take for the
sensor hub to perform the classification was barely signifi-
cant. The sensor hub was able to run the Pedometer specific
classifier for 100 runs in under 350 microseconds.
TRACE-DRIVEN EVALUATION
The end-to-end experiment shows that MobileHub is practical
and can be implemented in smartphones. However, the set up
is bulky and cannot be moved from the lab. Further, sensor
applications are largely driven by the user’s environment which
is difficult to replicate in the lab.

To perform controlled and reproducible experiments, we per-
form phone emulation using real sensor traces. The goal of
our evaluation is to show that, for a diverse range of applica-
tions, the MobileHub-instrumented app: (a) reduces power
consumption significantly, and (b) only minimally changes the
application semantics.

All experiments were performed on two Galaxy Nexus and
two Nexus S phones that run Android version 4.2.2.

Applications
We download 20 applications from Google Play for evaluation
(Table 1). The table shows the name of the app, the pur-
pose of the app, and the sampling frequency used by the app.
Accelerometer is by far the most popular sensor; accordingly,
75% of the applications in our evaluation use the accelerometer
sensor. The other applications use gyroscope, magnetometer,
and orientation sensors. The orientation sensor is a software
sensor that combines magnetometer and accelerometer.

Our goal when choosing the applications was to cover a diverse
set of tasks: step counting, fall detection, metal detection, theft
and motion monitoring, earthquake detection, sleep monitor-
ing, and driver monitoring. We searched for each of these tasks
and randomly picked top application(s) returned on Google
Play. We rewrite each application to create a MobileHub-
instrumented version as described in §Implementation.

Methodology
For emulation, we run each application on the phone. However,
the applications receive sensor values from a trace file rather
than from the on-board sensors. For instance, a step-counting
application emulated using a walking trace will behave as if
user were taking the same steps captured in the trace.

The trace file embeds meta information about the buffering
policy. In the default case, there is no buffering, and the sensor
values are returned at the rate requested by the application.
For the MobileHub experiments, we run the classifier over the

Name Google Play Store ID Purpose Sensor Sample Interval (ms)
nwalk pl.rork.nWalk Step counting Accelerometer 20
pedometer bagi.levente.pedometer Step counting Accelerometer 20
stepcounter Stepcounter.Step Step counting Accelerometer 60
appsone net.appsone.android.pedometer Step counting Accelerometer 200
virtic jp.virtic.apps.WidgetManpok Step counting Accelerometer 60
walking cha.health.walking Step counting Accelerometer 20
lodecode com.lodecode.metaldetector Metal detector Magnetometer 60
imkurt com.imkurt.metaldetector Metal detector Magnetometer 20
tdt com.tdt.magneticfielddetector Metal detector Magnetometer 20
multunus com.multunus.falldetector Fall detector Accelerometer 20
iter com.iter.falldetector Fall detector Accelerometer 40
t3lab it.t3lab.fallDetector Fall detector Accelerometer 20
fall com.fall Fall detector Accelerometer 20
jietusoft com.jietusoft.earthquake Earthquake detector Accelerometer 20
vibration ycl.vibrationsensor Earthquake detector Orientation 20
posvic cz.posvic.fitnessbar.sleeptrack Sleep monitoring Gyroscope 20
myway myway.project.sleepmanagement Sleep monitoring Accelerometer 40
driving jp.co.noito. Accelerometer Driver monitoring Accelerometer 40
motion com.app.accelerometer Motion detector Accelerometer 40
thefthead com.thefthead.appfinalsettings Theft detector Accelerometer 200

Table 1. Applications used in our evaluation.

trace file to determine the buffering policy at each instance of
the trace; i.e., given the sensor reading, should the reading be
buffered or sent to the application. This policy is embedded in
the trace file.

Trace Collection We built an Android app to collect user traces
as participants perform representative tasks for each applica-
tion type. We did not monitor the participant as they per-
formed any of the tasks. We did not tell them the purpose of
the trace collection. None of the authors participated in the
trace collection. The institutional human subjects review board
determined that the trace collection was not human subjects
research.

For step detection, we asked the participant to simply carry
the phone around as they go about their normal activities.
For sleep monitoring and driver monitoring apps, we asked
the participant to start the trace collection before they go to
sleep and start to drive, respectively. For fall detection apps,
earthquake detection and motion detection apps, we asked the
participant to perform the representative task every once in a
while. For example, for fall detection, we asked the user to
drop the phone every now and then. We did not instruct them
on exactly how or when they should perform the task.

We collected 10 traces each for sleeping, driving, and day-in-
the-life activities, and 5 traces for the other activities. One
participant could collect traces for multiple application types.
In total, we collected traces from 21 participants. The traces
were between 14 minutes and an hour long, each containing
about 40k to 200k sensor samples.

Running the classifier on the trace: To train the classifier, we
randomly pick 1-3 user traces. We use the remaining traces
for testing. We perform a 10-fold cross validation to ensure
that our results are sound and not influenced by the choice of
training and testing sets. We omit the results evaluating the
classifier accuracy in the interest of space. We use the learned

classifier for each application in the rest of our experiments.
Each trace was down-sampled according to the application’s
sampling rate if needed.

Power Accounting
We break down the power measurement in two parts: the
power consumption of the application running on the phone
and the power consumption of the sensor hub.

We directly measure the power consumption of the phone
using the Monsoon power monitor. In the end-to-end experi-
ments, we measure the power consumption of the sensor hub
also. However, power measurements of the sensor hub is tricky
during emulations because we are replacing the sensor hub
functionality using the emulator. Instead, we build a model of
the sensor hub power consumption using real experiments.

We use the MobileHub implementation set up (Figure 8) and
repeat each representative sensor hub activity: reading sen-
sor values, running the classifier, buffering, and writing the
sensor values back to the phone. We repeat these activities
for varying parameters: different sensor frequencies, different
buffering rate, different classifiers, etc. As before, we con-
nect the set up to the Monsoon Power Monitor to measure
the power consumption. Using the measurement, we build
a model for sensor hub power consumption. We verify the
accuracy of the model using our end-to-end experiment.

The total power consumption is computed as the sum of the
phone power consumption and the sensor hub power consump-
tion, minus the power consumed by the emulation trace service.
Finally, we measure the power consumption of the USB OTG
cable and subtract this from the total power consumption.

Metrics
Power consumption is the most important metric against which
we evaluate MobileHub. However, it is equally important that
MobileHub does not change the application semantics. Recall

that MobileHub delays when the application receives sensor
data, and this can potentially delay application notification.
For example, a fall detection application may not call for help
immediately after the fall occurs.

We measure the delay in notification using 3 metrics: fraction
of delayed notification, the 95th percentile delay and the max
notification delay. We first run the original application over
a user trace and record the application notifications. We then
run the MobileHub-instrumented app using the same trace and
compare the two sets of notifications. The notification is said
to be delayed if the MobileHub-instrumented application does
not generate a notification in the same active period (of 500ms
length) as the original application.

Results
Power consumption: Figures 10–14 show the improvement
in power consumption when using MobileHub for 17 of the
20 apps. We present the results for three user traces not part
of the training set.

Taking the Metal detector apps out, the average power im-
provement across all the other apps, across both traces is 70%,
with a median of 74%. The power improvement in some cases
is as high as 81%.

The metal detector apps provided an average energy improve-
ment of 33%. On further analysis, we find that the metal
detection traces induced frequent app notifications. Mobile-
Hub only provides benefits when the application is idle for
long periods of time, and the notification behavior markedly
reduced the benefits of MobileHub. This notification behavior
is likely because participants collecting the traces were often
close to a metal source.

We found that 3 out of the 20 apps we evaluated—multunus,
walking, and myway—were structured in a way that could not
leverage MobileHub. For that matter, the apps cannot leverage
any sensor hub optimization unless they are restructured. We
discuss these later.

Effect on application semantics: Tables 2–5 show how often
the notifications were delayed and by how much. The first col-
umn is a fraction of notification delays. The second and third
column shows how much the delay was in terms of the 95th
percentile delay, and the max notification delay respectively.

The results show that MobileHub induces almost no delay
in app notifications in most cases. For instance, the nWalk
application had 3914 notifications, out of which MobileHub
delayed only 1 notification. In many cases, MobileHub did
not delay any notification.

Even when delayed, a notification for an application is delayed
only 0.015 times across all the applications, on an average.
In 80% of the cases the maximum delay is less than 1 sec-
onds. For certain apps such as appsone, the max delay is as
high as 59.6 seconds. This is because appsone samples the
sensor value at low sampling rate of 200ms. When the clas-
sifier is wrong, the time it takes to recover from the wrong
classification increases due to the low sampling rate.

App nwalk pedo-
meter

step
counter

appsone virtic

Delay/Total 1/3914 0/1232 0/1132 4/2121 0/7483
95th delay(s) 0.46 0.46 0.52 0.80 0.52
Max delay(s) 1.86 0.48 0.52 59.60 0.52

Table 2. Notification delay metrics for step counting apps.

App lodecode imkurt tdt jietusoft vibration
Delay/Total 0/39 2/142 0/3688 0/33 0/415
95th delay (s) 0.45 0.46 0.46 0.48 0.46
Max delay (s) 0.45 0.98 0.48 0.48 0.48

Table 3. Notification delay metrics for metal detection and earthquake
detection apps.

App iter t3lab fall
Delay/Total 0/7 3/26 0/11
95th delay (s) 0.40 1.86 0.38
Max delay (s) 0.40 15.28 0.38

Table 4. Notification delay metrics for fall detection apps.

App posvic driving motion thefthead
Delay/Total 1/36 0/2022 0/54 6/65
95th delay (s) 0.48 0.48 0.48 1.60
Max delay (s) 0.64 0.48 0.48 2.80

Table 5. Notification delay metrics for other apps.

As discussed earlier (§Labeling), the window size parameter
can be tuned to trade-off between reducing power consumption
and avoiding notification delays.

Static buffering policy: An alternative to MobileHub’s
buffering policy is to use static buffering. The problem with a
static buffer is that a small buffer does not provide significant
power benefits since it does not keep the main processor idle
for long. However, a large buffer can significantly delay the
application notification, changing the app semantics.

Figure 15 shows that percentage notification delay metric
when using a static buffering policy with buffer size 10, 30 and
50 sensor samples, compared to MobileHub. The application’s
notification gets delayed up to 46% of the time when the buffer
size is set to 50. Contrast this to MobileHub, which delays
notification 0% of the time (see Table 2).

On further experimentation, we found that using a static buffer
size of 10 samples reduced power consumption of the pedome-
ter application by only 24.8%, compared to the 68% power
reduction achieved by MobileHub (see Figure 11). Mobile-
Hub sets the buffering rate dynamically in response to the
sensor readings. For example, in this experiment, MobileHub
buffered between 0 to 18413 samples, with an average buffer
size of 91 sensor samples.

Apps for which MobileHub does not help: For three apps
we instrumented, MobileHub did not provide benefits. The
walking app incorrectly uses the host’s clock value to time
the sensor data, rather than use the timestamp included in
the sensor event. This is wrong programming practice when
dealing with an asynchronous interface. Doing so results
in MobileHub-instrumented app observing out-of-date and
seemingly non-uniform streams of readings. Therefore, we do
not optimize this app.The MyWay app constantly updates the
screen. The Multunus app requires the screen to be switched-

Figure 10. Fall detection apps. Figure 11. Step detection apps. Figure 12. Earthquake detection apps.

Figure 13. Metal detection apps. Figure 14. Misc. motion detection apps. Figure 15. Percentage delayed notification when
using a static buffer vs using MobileHub’s dy-
namic buffering for the pedometer app.

on continuously. In both cases, the main processor cannot be
idle, negating the benefits of MobileHub.

The sensor hub architecture is designed to optimize power
consumption of apps based on two assumptions: (a) the main
processor can be idle for larger periods of time, and (b) the
application will behave correctly even if it receives multiple
sensor values at the same time. Since the three applications
break these assumptions, they can benefit from the sensor hub
architecture only if they are restructured.
RELATED WORK
MobileHub uses concepts from prior research on heteroge-
neous hardware, low-power sensing, and taint tracking. Below,
we describe these related efforts and place MobileHub in con-
text.

Power efficiency of sensing applications: There has been
considerable work in reducing the power consumption of high
power sensors such as GPS [45, 30, 15, 32, 26]. For exam-
ple, the ACE [32] system uses user context to correlate low
power sensor values with that of high power sensors. LAB
abstraction [26] allows users to specify their latency, accu-
racy, and battery requirements, and the system automatically
chooses sensor algorithms based on the requirements. These
techniques are complimentary to MobileHub and can help
further reduce the power consumption of sensing applications.

Heterogeneous architectures: Dedicated co-processors for
sensors are a natural way to support always-on sensing effi-
ciently and many commercial mobile processors now include
sensor hubs. Bodhi et al. [33] have shown that careful coding

of a pedometer application to make use of a sensor hub reduces
power consumption by up to 95%. Going further, Ra et al. [34]
analyze different design choices that the developer can use
to partition a mobile application between the phone and the
sensor hub.

Approaches such as Reflex [28] and K2 [27] provide sup-
port for a software distributed shared memory, so that the
developers can communicate between the main processor and
co-processor without worrying about cache coherency. These
approaches all show the power efficiency can be had from a
sensor hub. Our work hopes to get the power efficiency, but
without requiring additional programming effort.

The sensor hub itself is not a new idea and the approach of
using a tiered system for energy efficiency has been used in
several settings before [11, 37, 38].

Alternate hardware support: The sensor hub design inte-
grates all of the sensors into a single centralized resource that
serves as the hosts single point of contact for sensor data. An
alternative to a sensor hub design is to embed buffering and
simple programmable logic into the sensors themselves. Such
an approach is referred to as “smart sensing” and commercial
versions exist (e.g., The Micronas Hall-effect sensors). This
approach work well for special-purpose devices, but scales
poorly and suffers from not being as programmable as a sensor
hub. In the same vein, big.LITTLE ARM architecture [24] is a
new architecture that allows switching between a higher power
and a lower power processor with little latency. MobileHub
can greatly benefit from such an architecture.

Taint tracking: Dynamic taint analysis in smartphones
broadly used in the context of application security and pri-
vacy [20, 36]. Systems such as FlowDroid [12] use static taint
analysis, also to reduce privacy leaks. Recently, taint track-
ing has been used to detect energy leaks in applications [44].
However, these existing taint tracking tools for smartphones
only capture explicit information flows.

Capturing implicit flows is challenging and is a topic of con-
tinuing research efforts [17, 14, 25]. To avoid implicit flow
from generating a large amount of false positive, both Bao
et al. [14] and DTA++ [25] identify special types of implicit
flow that specific control dependencies. The Dytan [17] sys-
tem is a more general framework for implicit flow tracking, but
targets x86. Vogt et al. [43] implement implicit flow tracking
to prevent cross-site scripting attacks on web applications.

Given the importance of tracking implicit flows in smart-
phones, a recent work called Edgeminer [16] provides a tech-
nique to track implicit flows during static analysis. In Mobile-
Hub, we present a technique for implicit flow tracking during
dynamic analysis for smartphones. MobileHub builds upon on
TaintDroid [20], a dynamic flow tracking technique for smart-
phones that only tracks explicit flows. Our work borrows ideas
from the existing work, especially from the work presented by
Vogt et al. [43]. Similar to their work, we identify control flow
loops that are likely to be tainted, and instrument these loops.

DISCUSSION
What applications cannot benefit from MobileHub? Mo-
bileHub is not a cure-all for inefficient mobile sensing applica-
tions. For example, a Pedometer application may update the
user’s step count twenty times per second. While it may not
be necessary to update the user’s step count that frequently,
MobileHub does not know this. It will try to optimize based
on the original application semantics and learn that the sensor
values cannot be buffered for long periods of time.

MobileHub provides the biggest improvement for applications
that make use of simple high-frequency sensors such as ac-
celerometer, gyroscope and magnetometer. It provides little
power improvement for GPS since the sensor itself is high
power and wakes the processor less frequently.

What other applications can benefit from MobileHub?
The applications we select in our evaluation have similar char-
acteristics; they are based on detecting changes to common
on-board sensors such as the accelerometer. This focus is in
large part due to the availability and popularity of such apps.
However, the core idea in MobileHub can be used in other
scenarios. For example, if a microphone is connected to the
sensor hub, the MobileHub system could directly be applied to
apps making audio-based classification. Similarly, MobileHub
can be extended to save power for networked sensors [23, 39].
This will of course require that the sensor hub have access to
the network stack implementation [7] to allow it to buffer and
delay the delivery of networked sensor packets.

What happens if the classifier is inaccurate? Certain fac-
tors can lead to learning an inaccurate classifier. First, we
assume that the sensor value deterministically affects applica-
tion behavior. However, applications may make decisions that

combine the sensor values with other inputs. Our taint track-
ing approach cannot track this, and will not learn a classifier
that predicts important sensor reading values. Similarly, we
assume that the application notification occurs immediately
after an important sensor event. However, application may
produce a notification some time after the sensor event oc-
curs, because of computation time. In both cases, the result is
that the classifier accuracy is low. In MobileHub we measure
the accuracy of the classifier using a test set, and return the
application unoptimized if the accuracy is low.

Finally, MobileHub is designed to reduce the notification de-
lay, but does not provide guarantees. Although our evaluations
show that MobileHub does not delay notifications by more
than 1 second in most cases, we cannot provide guarantees on
the maximum notification delay. One possible way to reduce
the severity of this problem is to use online loopback. We
envision deploying MobileHub alongside an online loopback
system that collects the user traces and notifications period-
ically. A cloud service analyzes these traces to replay the
notification delays as seen by the application. Based on this
analysis, MobileHub can either decide to be aggressive or
conservative in buffering.

CONCLUSIONS
For sensor hubs to realize their potential, we must work out
how application developers will use them. We have presented
MobileHub, a system that rewrites applications to leverage
the sensor hub for power efficiency but without additional
programming effort. To do this, MobileHub analyzes appli-
cations to identify and learn when the application acts on the
sensor data to generate a user-perceivable notification. Based
on this learning, MobileHub simply buffers the sensor data
when the application does not require it, and notifies the ap-
plication with the buffered data when the application needs to
act on it. By buffering the sensor data, MobileHub allows the
application and the main processor to be idle, saving power.
We implemented MobileHub over Android and prototyped a
sensor hub comprised of an 8-bit AVR micro-controller for
experimentation. We experiment with 20 sensor applications
that we download from Google Play and use MobileHub to
rewrite the applications. The applications perform diverse
tasks—Step counting, Fall detection, Sleep monitoring, Driver
monitoring, Earthquake detection, and Metal detection. Our
evaluation demonstrates MobileHub’s ability to significantly
reduce power consumption with almost no change to the ap-
plication semantics.

Acknowledgments
We gratefully acknowledge the anonymous reviewers. This
work was supported by the Intel Science and Technology Cen-
ter for Pervasive Computing and National Science Foundation
(CNS-1217644, CNS-1318396 and CNS-1420703). Special
thanks to Xin Xu, Eric Nhan, and Jeremy Teo for help with
user data collection, power measurements, and automation.
Thanks to Eric Yuan for helping us with an earlier version of
the MobileHub system.

REFERENCES
1. Activity recognitionclient:

http://developer.android.com/

reference/com/google/android.
2. Apple M7.

http://en.wikipedia.org/wiki/Apple_M7.
3. BeWell Mobile Application.

https://play.google.com/store/apps/

details?id=org.bewellapp&hl=en.
4. Intel Context Sensing SDK. https://software.

intel.com/en-us/context-sensing-sdk.
5. ios core motion framework reference: https:
//developer.apple.com/library/ios.

6. Physicaloid : Physical computing with a smartphone.
http://www.physicaloid.com/?lang=en.

7. RF, Wi-Fi and Other Wireless Microcontroller-Based
Solutions. http:
//www.atmel.com/products/wireless/.

8. XMega-A3BU XPlained. http://www.atmel.com/
tools/XMEGA-A3BUXPLAINED.aspx.

9. Atmel: USB Device CDC Application. http:
//www.atmel.com/Images/doc8447.pdf,
2011.

10. TivaWare Sensor Library User Guide. http://www.
ti.com/lit/ug/spmu371/spmu371.pdf, 2015.

11. Agarwal, Y., Hodges, S., Chandra, R., Scott, J., Bahl, P.,
and Gupta, R. Somniloquy: augmenting network
interfaces to reduce pc energy usage. In Proceedings of
the 6th USENIX symposium on Networked systems design
and implementation, NSDI’09, USENIX Association
(Berkeley, CA, USA, 2009), 365–380.

12. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’14, ACM (New York, NY, USA, 2014), 259–269.

13. Austin, T. H., and Flanagan, C. Permissive dynamic
information flow analysis. In Proceedings of the 5th ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS ’10, ACM (New York, NY,
USA, 2010), 3:1–3:12.

14. Bao, T., Zheng, Y., Lin, Z., Zhang, X., and Xu, D. Strict
control dependence and its effect on dynamic information
flow analyses. In Proceedings of the 19th international
symposium on Software testing and analysis, ACM
(2010), 13–24.

15. Bo, C., Li, X.-Y., Jung, T., Mao, X., Tao, Y., and Yao, L.
Smartloc: Push the limit of the inertial sensor based
metropolitan localization using smartphone. In
Proceedings of the 19th Annual International Conference
on Mobile Computing & Networking, MobiCom ’13,
ACM (New York, NY, USA, 2013), 195–198.

16. Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel,
C., Vigna, G., and Chen, Y. Automatically detecting
implicit control flow transitions through the android
framework. In In Proceeding of the Network and
Distributed System Security Symposium (NDSS15 (2015).

17. Clause, J., Li, W., and Orso, A. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007
international symposium on Software testing and
analysis, ACM (2007), 196–206.

18. DATASHEET, A. 8-bit avr® microcontroller with
4/8/16/32k bytes in-system programmable flash, 2010.

19. Denning, D. E., and Denning, P. J. Certification of
programs for secure information flow. Commun. ACM 20,
7 (July 1977), 504–513.

20. Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI (2010).

21. Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., and Witten, I. H. The WEKA data mining
software: an update. ACM SIGKDD explorations
newsletter 11, 1 (2009), 10–18.

22. Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan,
R. Puma: Programmable ui-automation for large-scale
dynamic analysis of mobile apps. In Proceedings of the
12th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’14, ACM (New
York, NY, USA, 2014), 204–217.

23. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and
Pister, K. System architecture directions for networked
sensors. In ACM SIGOPS operating systems review,
vol. 34, ACM (2000), 93–104.

24. Jeff, B. Advances in big. little technology for power and
energy savings. ARM White Paper (2012).

25. Kang, M. G., McCamant, S., Poosankam, P., and Song, D.
Dta++: Dynamic taint analysis with targeted control-flow
propagation. In NDSS (2011).

26. Kansal, A., Saponas, T. S., Brush, A. J. B., McKinley,
K. S., Mytkowicz, T., and Ziola, R. The latency, accuracy,
and battery (lab) abstraction: programmer productivity
and energy efficiency for continuous mobile context
sensing. In OOPSLA, ACM (2013), 661–676.

27. Lin, F. X., Wang, Z., and Zhong, L. K2: A mobile
operating system for heterogeneous coherence domains.
In ASPLOS (2014).

28. Lin, X. F., Wang, Z., LiKamWa, R., and Zhong, L.
Reflex: Using low-power processors in smartphones
without knowing them. In ASPLOS (2012).

29. Lisa, E. Intel Unveils New Merrifield Smartphone Chip
With Integrated Sensor Hub.
http://blog.laptopmag.com/

intel-merrifield-smartphone-chip.

http://developer.android.com/reference/com/google/android
http://developer.android.com/reference/com/google/android
http://en.wikipedia.org/wiki/Apple_M7
https://play.google.com/store/apps/details?id=org.bewellapp&hl=en
https://play.google.com/store/apps/details?id=org.bewellapp&hl=en
https://software.intel.com/en-us/context-sensing-sdk
https://software.intel.com/en-us/context-sensing-sdk
https://developer.apple.com/library/ios
https://developer.apple.com/library/ios
http://www.physicaloid.com/?lang=en
http://www.atmel.com/products/wireless/
http://www.atmel.com/products/wireless/
http://www.atmel.com/tools/XMEGA-A3BUXPLAINED.aspx
http://www.atmel.com/tools/XMEGA-A3BUXPLAINED.aspx
http://www.atmel.com/Images/doc8447.pdf
http://www.atmel.com/Images/doc8447.pdf
http://www.ti.com/lit/ug/spmu371/spmu371.pdf
http://www.ti.com/lit/ug/spmu371/spmu371.pdf
http://blog.laptopmag.com/intel-merrifield-smartphone-chip
http://blog.laptopmag.com/intel-merrifield-smartphone-chip

30. Liu, J., Priyantha, B., Hart, T., Ramos, H. S., Loureiro, A.
A. F., and Wang, Q. Energy efficient gps sensing with
cloud offloading. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems,
SenSys ’12, ACM (New York, NY, USA, 2012), 85–98.

31. Morales, M. An Introduction to the Tiva™ C Series
Platform of Microcontrollers. Tech. rep., Texas
Instruments, April 2013.

32. Nath, S. Ace: Exploiting correlation for energy-efficient
and continuous context sensing. In Proceedings of the
10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, ACM (New
York, NY, USA, 2012), 29–42.

33. Priyantha, B., Lymberopoulos, D., and Liu, J. Littlerock:
Enabling energy-efficient continuous sensing on mobile
phones. In IEEE Pervasive Computing (2011).

34. Ra, M.-R., Priyantha, B., Kansal, A., and Liu, J.
Improving energy efficiency of personal sensing
applications with heterogeneous multi-processors. In
Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, UbiComp ’12, ACM (New York, NY, USA,
2012), 1–10.

35. Ravindranath, L., Nath, S., Padhye, J., and Balakrishnan,
H. Automatic and scalable fault detection for mobile
applications. In Proceedings of the 12th Annual
International Conference on Mobile Systems,
Applications, and Services, MobiSys ’14, ACM (New
York, NY, USA, 2014), 190–203.

36. Rosen, S., Qian, Z., and Mao, Z. M. Appprofiler: A
flexible method of exposing privacy-related behavior in
android applications to end users. In Proceedings of the
Third ACM Conference on Data and Application Security
and Privacy, CODASPY ’13, ACM (New York, NY,
USA, 2013), 221–232.

37. Shih, E., Bahl, P., and Sinclair, M. J. Wake on wireless:
an event driven energy saving strategy for battery
operated devices. In Proceedings of the 8th annual
international conference on Mobile computing and
networking, MobiCom ’02, ACM (New York, NY, USA,
2002), 160–171.

38. Sorber, J., Banerjee, N., Corner, M. D., and Rollins, S.
Turducken: hierarchical power management for mobile
devices. In Proceedings of the 3rd international
conference on Mobile systems, applications, and services,
MobiSys ’05, ACM (New York, NY, USA, 2005),
261–274.

39. Stankovic, J. A., Wood, A. D., and He, T. Realistic
applications for wireless sensor networks. In Theoretical
Aspects of Distributed Computing in Sensor Networks.
Springer, 2011, 835–863.

40. Stone, M. Cross-validatory choice and assessment of
statistical predictions. Journal of the Royal Statistical
Society. Series B (Methodological) (1974), 111–147.

41. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P.,
and Sundaresan, V. Soot: A java bytecode optimization
framework. In CASCON First Decade High Impact
Papers, IBM Corp. (2010), 214–224.

42. Vallee-Rai, R., and Hendren, L. J. Jimple: Simplifying
java bytecode for analyses and transformations.

43. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel,
C., and Vigna, G. Cross-site scripting prevention with
dynamic data tainting and static analysis. In In
Proceeding of the Network and Distributed System
Security Symposium (NDSS07 (2007).

44. Zhang, L., Gordon, M. S., Dick, R. P., Mao, Z. M., Dinda,
P., and Yang, L. Adel: An automatic detector of energy
leaks for smartphone applications. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’12, ACM (New York, NY, USA, 2012),
363–372.

45. Zhuang, Z., Kim, K.-H., and Singh, J. P. Improving
energy efficiency of location sensing on smartphones. In
Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10,
ACM (New York, NY, USA, 2010), 315–330.

