
MCDNN:
An Approximation-Based Execution Framework for

Deep Stream Processing Under Resource Constraints

Seungyeop Han∗
University of Washington

Haichen Shen∗
University of Washington

Matthai Philipose
Microsoft Research

Sharad Agarwal
Microsoft Research

Alec Wolman
Microsoft Research

Arvind Krishnamurthy
University of Washington

ABSTRACT
We consider applying computer vision to video on cloud-backed
mobile devices using Deep Neural Networks (DNNs). The com-
putational demands of DNNs are high enough that, without careful
resource management, such applications strain device battery, wire-
less data, and cloud cost budgets. We pose the corresponding resource
management problem, which we call Approximate Model Scheduling,
as one of serving a stream of heterogeneous (i.e., solving multiple
classification problems) requests under resource constraints. We
present the design and implementation of an optimizing compiler and
runtime scheduler to address this problem. Going beyond traditional
resource allocators, we allow each request to be served approxi-
mately, by systematically trading off DNN classification accuracy
for resource use, and remotely, by reasoning about on-device/cloud
execution trade-offs. To inform the resource allocator, we charac-
terize how several common DNNs, when subjected to state-of-the
art optimizations, trade off accuracy for resource use such as mem-
ory, computation, and energy. The heterogeneous streaming setting
is a novel one for DNN execution, and we introduce two new and
powerful DNN optimizations that exploit it. Using the challenging
continuous mobile vision domain as a case study, we show that our
techniques yield significant reductions in resource usage and perform
effectively over a broad range of operating conditions.

1. INTRODUCTION
Over the past three years, Deep Neural Networks (DNNs) have be-
come the dominant approach to solving a variety of computing prob-
lems such as speech recognition, machine translation, handwriting
recognition, and computer vision problems such as face, object and
scene recognition. Although they are renowned for their excellent
recognition performance, DNNs are also known to be computation-
ally intensive: networks commonly used for speech, visual and lan-
guage understanding tasks routinely consume hundreds of MB of
memory and GFLOPS of computing power [30, 46], typically the
province of servers (Table 1). However, given the relevance of such
applications to the mobile setting, there is a strong case for executing

∗Both authors contributed equally to this work.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiSys’16, June 25-30, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-4269-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2906388.2906396

face [46] scene [52] object [44]

training time (days) 3 6 14-28
memory (floats) 103M 76M 138M
compute (FLOPs) 1.00G 2.54G 30.9G
accuracy (%) 97 51 94

Table 1: Although DNNs deliver state-of-the art classification
accuracy on many recognition tasks, this functionality comes at
very high memory (space shown is to store an active model) and
computational cost (to execute a model on a single image window).

DNNs on mobile devices. In this paper, we present a framework
for executing multiple applications that use large DNNs on (inter-
mittently) cloud-connected mobile devices to process streams of
data such as video and speech. We target high-end mobile-GPU-
accelerated devices, but our techniques are useful broadly. We require
little specialized knowledge of DNNs from the developer.

Recent work has attacked the overhead of DNNs from several
directions. For high-value scenarios such as speech and object recog-
nition, researchers have crafted efficient DNNs by hand [32, 42, 45]
or structured them for execution on efficient co-processors such as
DSPs (for smaller DNNs) [31]. In the somewhat longer term, work
from the hardware community on custom accelerators seems very
promising [11]. An intermediate approach that is both automatic
and effective is what we term model optimization, which are tech-
niques that apply automatically to any DNN and reduce memory
[13, 22, 50, 51] and processing demands [25, 42] of DNNs, typically
at the cost of some classification accuracy. These efforts have yielded
promising results: it is possible to generate models that sacrifice a
modest amount of classification accuracy (e.g., 1-3%) that are small
enough to fit comfortably in mobile memories (e.g., 10× reduction
in space used) and can be executed in real time (e.g., 3× reduction
processing demands) on a mobile GPU.

MCDNN considers applying model optimization to the multi-
programmed, streaming setting. We anticipate that in the near future,
multiple applications will seek to run multiple DNNs on incoming
high-datarate sensor streams such as video, audio, depth and thermal
video. The large number of simultaneous DNNs in operation and the
high frequency of their use will strain available resources, even when
optimized models are used. We use two insights to address this prob-
lem. First, model optimization typically allows a graceful tradeoff
between accuracy and resource use. Thus, a system could adapt to
high workloads by using less accurate variants of optimized models.
Second, both streaming and multi-programming themselves provide
additional structure that enable powerful new model optimizations.
For instance, streams often have strong temporal locality (e.g., a
few classes dominate output for stretches of time), and queries from

http://dx.doi.org/10.1145/2906388.2906396

Cloud
targetedOcloudObudget
910/stream/yr
<70.17cores

ConvolutionalONeuralONetwork
>>7100ms/frame
>=737cores/stream7 @730fps

WWANObudget 10GB/mo

mobileOpowerObudget
10-30O7of710Wh7for710h7
=71007- 300mW

AtherosO+5FL--OaEg
15Mbps7@7700mW
=747nJ/b

Omnivision
OVFH65
90mW

Tegra K-OGPU
FI5GOPS @10W
=734pJ/Op

QualcommOSD+-5LTE
>800mW

imager processors radio
-M5D-H5oOFOVO
FMOpixEo

-=MbpsO=O2.1TB/mo

Ambarella H-F
codecO@OIP
>=500mW

Figure 1: Basic components of a continuous mobile vision system.

multiple programs on the same stream may have semantic similarity
that allows sharing of computation.

We formulate the problem of adaptively selecting model variants
of differing accuracy in order to remain within per-request resource
constraints (e.g., memory) and long-term constraints (e.g., energy)
while maximizing average classification accuracy as a constrained
optimization problem we call Approximate Model Scheduling (AMS).
To solve AMS, MCDNN contains three innovations. First, we gener-
ate optimized variants of models by automatically applying a variety
of model optimization techniques with different settings. We record
accuracy, memory use, execution energy, and execution latency of
each variant to form a catalog for each model. Second, we introduce
two new model optimizations, specialization and sharing, that are
designed to take advantage of streaming and multi-programming
respectively. Finally, we provide a heuristic scheduling algorithm
for solving AMS that allocates resources proportionally to their fre-
quency of use and uses the catalog to select the most accurate corre-
sponding model variant.

As a running case study, and for purposes of evaluation, we target
the continuous mobile vision setting: in particular, we look at en-
abling a large suite of DNN-based face, scene and object processing
algorithms based on applying DNNs to video streams from (poten-
tially wearable) devices. We consider continuous vision one of the
most challenging settings for mobile DNNs, and therefore regard it
as an adequate evaluation target. We evaluate MCDNN on very large
standard datasets available from the computer vision community. Our
results show that MCDNN can make effective trade-offs between
resource utilization and accuracy (e.g., transform models to use 4×
fewer FLOPs and roughly 5× less memory at 1-4% loss in accuracy),
share models across DNNs with significant savings (e.g., 1-4 orders
of magnitude less memory use and 1.2-100× less compute/energy),
effectively specialize models to various contexts (e.g., specialize
models with 5-25× less compute, two orders of magnitude less stor-
age, and still achieve accuracy gains), and schedule computations
across both mobile and cloud devices for diverse operating conditions
(e.g., disconnected operation, low resource availability, and varying
number of applications). To the best of our knowledge, MCDNN is
the first system to examine how to apply DNNs efficiently to streams.

2. CONTINUOUS MOBILE VISION
Continuous mobile vision (CMV) refers to the setting in which a
user wears a device that includes a continuously-on (we target ten
hours of continuous operation) camera that covers their field of view

[6, 19, 37, 39, 47]. The device is often a custom wearable such as
Google Glass, but possibly just a mobile phone in a pocket. Video
footage from the camera is analyzed, typically in real time, using com-
puter vision techniques to infer information relevant to the user. While
current systems are research efforts aimed at key niche applications
such as cognitive assistance for the elderly and navigational assistance
for the blind, in the near future we anticipate a multi-programming
setting aimed at the general consumer, where multiple applications
issue distinct queries simultaneously on the incoming stream. For
example, various applications may need to recognize what the wearer
eats, who they interact with, what objects they are handling as part of a
task, the affect of the people they interact with and the attributes of the
place they are in. In this section, we introduce the resources involved
in such a system and motivate careful resource management via
controlling the overhead of Deep Neural Network (DNN) execution.

Video processing itself usually involves some combination of de-
tecting regions of interest in each frame (e.g., faces, pedestrians or
objects), tracking the trajectory of detected regions across time and
recognizing the detailed identities and attributes of these regions (e.g.,
recognizing the identity of people and objects interacted with). Al-
though traditionally detection and tracking have been performed with
relatively lightweight algorithms, state-of-the-art variants of these are
switching to Deep Neural Networks (DNNs) [29, 33]. More recent
work has begun to integrate detection and recognition using DNNs
[41]. Since detection and tracking computations are expected to be
performed frequently (e.g., a few times a second), we expect DNNs
to be applied several times to many of the video frames. We therefore
view DNN execution as the bulk of modern vision computation.

Figure 1 sketches the architecture of a state-of-the-art mobile/cloud
Continuous Mobile Vision (CMV) system. The two main physical
components are a battery-powered mobile device (typically some
combination of a phone and a wearable) and powered computing
infrastructure (some combination of a cloudlet and the deep cloud).
The camera on the wearable device must usually capture a large field
of view at high resolution and moderate frame rate. A resolution of
4k (4096×2160 pixels) at 15 frames per second is not unreasonable1,
drawing 90mW from a modern imager.

Consider performing all vision in the cloud, a “pure off-loading” ar-
chitecture. For high-resolution video, spending 0.5W on compression
and 0.7-1W on wireless offload is conservative, yielding a total av-
erage power draw of 1.3 to 1.6W for imaging, compression and com-
munication. A realistic 100× compression yields a 16Mbps stream
(= 4096×2160×15×1.5×8, using the 1.5 byte-per-pixel YUV rep-
resentation), or roughly 2.1TB per month at 10 hours usage per day.
Finally, we assume a conservative 1 DNN application per frame
(we expect that, in practice, applications may run multiple DNNs
on incoming frames). Additionally assuming a conservative 100ms
execution latency (we have measured 300-2000ms latencies for mod-
els commonly in use) for a DNN on a single CPU, keeping up with
15-30fps will require at least 1.5-3 cores, and often many times more.

In comparison, a large 3Ah mobile phone battery of today yields
roughly 1.2W over 10 hours. Further, today’s consumer mobile plans
cap data use at 10GB per month. Finally, continuous use of the re-
quired cores will cost roughly $150-300 per year2; more realistic
workloads could easily be 10 times as costly. Offloading all data
for cloud-processing using maximally accurate DNNs would thus
probably only be practical in usages with a large dedicated wearable
battery, lightly subscribed WiFi connection (thus limiting mobility)
and substantial cloud budget. One path to reducing these resource

1Better vertical coverage (e.g., 4096×4096 pixels total) would be
preferable, perhaps from two standard high-resolution imagers.
2Assuming a 3-year upfront lease on a C4.large machine from
Amazon EC2. GPU-based costs are at least as high.

op

…

…

H

M

M

H’

M’

M’

feature

maps

convolution (c)
matrix multiply (f)
local maximization (m)
linear rectification (r)
“softmax” rescaling (s)

c

r

m

c

r

m

m

r

c

r

c

r

c

f

r

f

r

f

s

(a) (b)

imgR

imgG

imgB

classes +

scores

Figure 2: (a) DNN “layers” are array operations on lists of arrays
called feature maps. (b) A state-of-the-art network for scene
recognition, formed by connecting layers.

demands is to reduce the amount of data transmitted by executing
“more lightweight” DNN calculations (e.g. detection and tracking) on
the device and only transmitting heavier calculations (e.g., recogni-
tion) to the cloud. Once at the cloud, reducing the overhead of (DNN)
computations can support more modest cloud budgets.

Now consider performing vision computations on the device. Such
local computation may be necessary during the inevitable disconnec-
tions from the cloud, or just preferable in order to reduce data trans-
mission power and compute overhead. For simplicity, let us focus on
the former (“purely local”) case. Video encoding and communication
overhead would now be replaced (at least partially) by computational
overhead. Given mobile CPU execution speeds (several seconds of ex-
ecution latency for standard DNNs), we focus on using mobile GPUs
such as the NVIDIA Tegra K1 [3], which supports 300GFLOPS peak
at a 10W whole-system-wide power draw. We time DNN execution on
the K1 to take 100ms (for the “AlexNet” object recognition model) to
900ms (for “VGGNet”). Handling the aforementioned conservative
processing rate of 1 DNN computation per frame at 15-30fps would
require 1.5-30 mobile GPUs, which amounts to 15-300W of mobile
power draw on the Jetson board for the K1 GPU. Even assuming a
separate battery, a roughly 1-1.2W continuous power draw is at the
high end of what is reasonable. Thus, it is important to substantially
reduce the execution overhead of DNNs on mobile GPUs.

To summarize, significantly reducing the execution costs of DNNs
can enable CMV in several ways. Allowing detection and tracking
to run on the mobile devices while infrequently shipping to cloud can
make transmission power and data rates manageable. Reducing the
cost of execution in the cloud can make dollar costs more attractive.
Allowing economical purely local execution maintains CMV service
when back-end connectivity is unavailable. Finally, if execution costs
are lowered far enough, pure local execution may become the default.

3. DEEP NEURAL NETWORKS
We now examine Deep Neural Networks, specifically the most com-
monly used variant called Convolutional Neural Networks (CNNs) in
some detail. Our goal is to convey the basic structure of CNNs, their
resource consumption patterns, the main current proposals for opti-
mizing their resource consumption and further opportunities opened
by streaming, multi-programmed settings.

3.1 Model structure
A CNN can be viewed as a dataflow graph where the nodes, or layers,
are array-processing operations (see Figure 2(a)). Each layer takes
as input a set of arrays (called feature maps), performs an array op-
eration on them, and outputs a set of feature maps that will in turn
be processed by downstream layers. The array operations belong to

data
conv1

pool1
conv2

pool2
conv3

conv4
conv5

pool5 fc1 fc2
Result

100

101

102

103

104

105

106

107

108

109

compute storage output size

Figure 3: Resource usage of AlexNet across layers (note log scale).

a small set, including matrix multiplication (that multiplies feature
maps by a weight matrix), convolution (that convolves inputs by
a convolution kernel, typically of size 3×3 or 5×5), max-pooling
(that replaces each input array value by the maximum of its neigh-
bors), non-linearizing (that replaces each array value by a non-linear
function of itself) and re-scaling (that re-scales inputs to sum to 1).
Figure 2(b) shows how layers are connected in a typical CNN: groups
of convolution, pooling and non-linearizing layers are repeated sev-
eral times before 1-2 matrix-multiplication (or fully connected) layers
are applied, ended by re-scaling.

The matrix multiplication and convolution layers are parameter-
ized by weight arrays that are estimated from training data. The
network description before training is called a model architecture,
and the trained network with weights instantiated is a model. Training
DNNs takes several days to weeks. Unlike recent systems work in
CNNs [15, 17], we are not concerned here with the efficient learning
of CNNs, but rather, their efficient execution. Most CNNs today tend
to be linear [30, 44], but DAGs [45] and loopy graphs, known as Re-
current Neural Networks (RNNs) [27], which are fully unrolled over
incoming data before execution, have also been considered. We focus
on linear networks below, but our techniques are applicable to others.

Figure 3 shows resource usage per layer for AlexNet, a representa-
tive architecture originally proposed for object recognition, but now
used as the basis for other tasks such a scene recognition as well. For
each layer on the x-axis, the y-axis (note the log scale) reports the
number of operations to execute the layer (labeled “compute”), the
number of floats to represent the layer (“storage”) and the number of
intermediate floats generated by the layer (“output size”). Two points
are key to optimizing resource usage:
1. Memory use is dominated by the weight matrix of the matrix mul-

tiplication layers (labeled “fc” for fully connected). Convolutional
kernels and even intermediate data size are small in comparison.

2. Computational overhead is dominated by convolution operations,
exceeding matrix multiplication overhead by an order of magni-
tude, with negligible overheads for pooling and non-linearization.

3.2 Model optimization
Recent model optimization techniques for reducing resource use in
DNNs have targeted these opportunities in three main ways:
1. Matrix factorization replaces the weight matrices and convolution

kernels by their low-rank approximations3 [25, 28, 42, 50]. Re-
placing a size-M×M weight matrix WM×M with its singular
value decompositionUM×kVk×M reduces storage overhead from
M2 to 2Mk and computational overhead fromM3 to 2M2k. The

3Convolution is implemented as matrix multiplication [10].

most recent results [28] have reported reductions of 5.5× in mem-
ory use and 2.7× in FLOPs at a loss of 1.7% accuracy for the
“AlexNet” model we use for scene recognition and 1.2×, 4.9× and
0.5% for the “VGG16” model we use for object recognition.

2. Matrix pruning [13, 22] sparsifies matrices by zeroing very small
values, use low-bitwidth representations for remaining non-zero
values and use compressed (e.g., Huffman coded) representations
for these values. The most recent results [22] report 11/8× re-
duction in model size and 3/5× reduction on FLOPs for AlexNet/
VGGNet, while sacrificing essentially no accuracy. However, for
instance, sacrificing 2% points of accuracy can improve memory
size reduction to 20×.

3. Architectural changes [44] explore the space of model architec-
tures, including varying the number of layers, size of weight
matrices including kernels, etc. For instance, reducing the number
of layers from 19 to ll results in a drop in accuracy of 4.1% points.

A common theme across these techniques is the trading off of re-
source use for accuracy. When applied to the distributed, streaming,
multi-programmed setting of MCDNN, several related questions
present themselves. What is the “best” level of approximation for any
model, at any given time, given that many other models must also
execute at limited energy and dollar budgets? Where (device or cloud)
should this model execute? Do the streaming and multi-programming
settings present opportunities for new kinds of optimizations? To
clarify the issues involved, we first capture these questions in a formal
problem definition below and then describe MCDNN’s solution.

4. APPROXIMATE MODEL SCHEDULING
Given a stream of requests to execute models of various types, MCDNN
needs to pick (and possibly generate), at each timestep, an approx-
imate variant of these models and a location (device or cloud) to exe-
cute it in. These choices must satisfy both long-term (e.g., day-long)
budget constraints regarding total energy and dollar budgets over
many requests, and short-term capacity constraints (e.g., memory
and processing-cycle availability). We call this problem the approx-
imate model scheduling (AMS) problem and formalize it below.

4.1 Fractional packing and paging
In formalizing AMS, we are guided by the literature on online paging
and packing. Our problem may be viewed as a distributed combina-
tion of online fractional packing and paging problems.

The standard fractional packing problem [8] seeks to maximize a
linear sum of variables while allowing upper bounds on other linear
sums of the same variables. In AMS, the assumption is that when
some model is requested to be executed at a time step, we have the
option of choosing to execute an arbitrary “fraction” of that model.
In practice, this fraction is a variant of the model that has accuracy
and resource use that are fractional with respect to the “best” model.
These fractions xt at each time step t are our variables. Assuming
for the moment a linear relation between model fraction and accu-
racy, we have average accuracy over all time steps proportional to∑
tatxt, where at is the accuracy of the best model for request t.

Finally, suppose one-time resource-use cost (e.g. energy, cloud cost)
is proportional to the fraction of the model used, with et the resource
use of the best variant of the model requested at t. A resource budget
E over all time steps gives the upper-bound constraint

∑
tetxt≤E.

Maximizing average accuracy under budget constraints of this form
gives a packing problem.

The weighted paging problem [7] addresses a sequence of t re-
quests, each for one of M pages. Let xmj ∈ [0,1] indicate what
fraction of pagemwas evicted in between its ith and i+1th requests.
The goal is to minimize over t requests the total number of (weighted)
paging events

∑
mj ctxmj . At the same time, we must ensure at

every time step that cache capacity is not exceeded: if k is cache size
and Rmt is the number of requests for model m up to time t and
Nt is the total number of requests in this time, we require ∀tNt−∑
m xmRmt ≤ k. If x’s are once again interpreted as fractional

models and ci represent energy costs, this formulation minimizes
day-long energy costs of paging while respecting cache capacity.

Finally, new to the AMS setting, the model may be executed either
on the local device or in the cloud. The two settings have differ-
ent constraints (e.g., devices have serious power and memory con-
straints), whereas cloud execution is typically constrained by dollars
and device-to-cloud communication energy.

The online variant of the above problems requires that optimization
be performed incrementally at each time step. For instance, which
model is requested at time t, and therefore the identity of coefficient
et is only revealed in timestep t. Fraction xt must then be computed
before t+1 (and similarly for cmj , j and xmj). On the other hand the
upper bound values (e.g.,E) are assumed known before the first step.
Recent work based on primal-dual methods has yielded algorithms
for these problems that have good behavior in theory and practice.

Below, we use these packing and paging problems as the basis for
precise specification of AMS. However, the resulting problem does
not fall purely into a packing or paging category. Our solution to
the problem, described in later sections, is heuristic, albeit based on
insights from the theory.

Note that we do not model several possibly relevant effects. The
“cache size” may vary across timesteps because, e.g., the machine is
being shared with other programs. The cost/accuracy tradeoff may
change with context, since models are specializable in some con-
texts. Sharing across models may mean that some groups of models
may cost much less together than as separately. Since different apps
may register different models to handle the same input type (e.g.,
face ID, race and gender models may all be registered to process
faces), we have a “multi-paging” scenario where models are loaded
in small batches. Although we do not model these effects formally,
our heuristic scheduling algorithm is flexible enough to handle them.

4.2 AMS problem definition
Our goal in this section is to provide a precise specification of AMS.
We seek a form that maximizes (or minimizes) an objective function
under inequalities that restrict the feasible region of optimization.

Assume a device memory of size S, device energy budgetE and
cloud cost budget ofD. Assume a set {M1,...,Mn} of models, where
each modelMi has a set Vi of variants {Mij |n≥ i≥1,ni≥j≥1},
typically generated by model optimization. For instance, M1 may
be a model for face recognition, M2 for object recognition, and so
on. Say each variantMij has size sij , device paging energy cost eij ,
device execution energy cost cij , device execution latency lij , cloud
execution cost cost dij , and accuracy aij . We assume accuracy and
paging cost vary monotonically with size. Below, we also consider a
continuous version V ′i ={Mix|n≥ i≥1,x∈ [0,1]} of variants, with
corresponding costs six, eix, cix, lix, dix and accuracy aix.

Assume an input request sequencemt1 ,mt2 ,...,mtT . Subscripts
tτ ∈R are timestamps. We call the indexes τ ’s “timesteps” below.
Each mtτ is a request for model Mi (for some i) at time tτ . For
each requestmtτ , the system must decide where (device or cloud) to
execute this model. If on-device, it must decide which variantMij ,
if any, ofMi to load into the cache and execute at timestep t, while
also deciding which, if any, models must be evicted from the cache
to make space forMij . Similarly, if on-cloud, it must decide which
variant to execute. We use the variables x, y and x′ to represent these
actions (paging, eviction and cloud execution) as detailed below.

Let xik ∈ [0,1] represent the variant of model Mi executed on-
device when it is requested for the kth time. Note xik = 0 implies

no on-device execution; presumably execution will be in the cloud
(see below). Although in practice xik∈Vi, and is therefore a discrete
variable, we use a continuous relaxation xik∈ [0,1]. In this setting,
we interpret xik as representing the variant Mixik . For model Mi,
let τik be the timestep it is requested for the kth time, and niτ be
the number of times it is requested up to (and including) timestep τ .
For any timestep τ , letR(τ) = {Mi|niτ ≥ 1} be the set of models
requested up to and including timestep τ .

Let yiτ ∈ [0,1] be the fraction of the largest variant M∗i of Mi

evicted in the τ ’th timestep. Let yki =
∑τik+1−1
τ=τik

yiτ be the total
fraction ofM∗i evicted between its kth and k+1th request. Note that
a fraction of several models may be evicted at each timestep.

Finally, let x′ik∈ [0,1] represent the variant of modelMi executed
on the cloud when it is requested for the k-th time. We require that
a given request for a model be executed either on device or on cloud,
but not both, i.e., that x′ikxik=0 for all i,k.

Now suppose xi(k−1) and xik are variants selected to serve the
k−1th and kth requests forMi. The energy cost for paging request
k is eixik if xi(k−1) 6= xik , i.e., a different variant is served than
previously, or ifMi was evicted since the last request, i.e., yk−1

i >0.
Otherwise, we hit in the cache and the serving cost is zero. Writ-
ing δ(x) = 0 if x = 0 and 1 otherwise, the energy cost for paging
is therefore eixikδ(|xi(k−1)−xik|+yk−1

i). Adding on execution
cost c, total on-device energy cost of serving a request is therefore
eixikδ(|xi(k−1)−xik|+yk−1

i)+cixik .
We can now list the constraints on an acceptable policy (i.e., as-

signment to xik’s and yiτ ’s). Across all model requests, maximize
aggregate accuracy of model variants served,

max
x

n∑
i=1

niT∑
k=1

aixik+aix′
ik

, (1)

while keeping total on-device energy use within budget:

n∑
i=1

niT∑
k=1

eixikδ(|xi(k−1)−xik|+yk−1
i)+cixik≤E, (2)

keeping within the cloud cost budget:

n∑
i=1

niT∑
k=1

dix′
ik
≤D, (3)

and at each timestep, not exceeding cache capacity:

∀
1≤τ≤T

∑
Mi∈R(τ)
1≤k≤niτ

sixik−
∑

Mi∈R(τ)

1≤τ ′≤τ

siyiτ′ ≤S, (4)

ensuring that the selected model variant executes fast enough:

∀
1≤i≤n

1≤k≤niT

lixik≤ tτik+1−tτik , (5)

and ensuring various consistency conditions mentioned above:

∀
1≤i≤n

1≤k≤niT

0≤xik,x′ik,yik≤1 and xikx′ik=0 (6)

4.3 Discussion
We seek to solve the above optimization problem online. On the sur-
face, AMS looks similar to fractional packing: we seek to maximize
the weighted sum of the variables that are introduced in an online
fashion, while upper-bounding various weighted combinations of
these variables. If we could reduce AMS to packing, we could use

Task Description (# training images, # test images, # class)

V VGGNet [44] on ImageNet data
A AlexNet on ImageNet data [18] for object recognition (1.28M, 50K, 1000)
S AlexNet on MITPlaces205 data [52] for scene recognition

(2.45M, 20K, 205)
M re-labeled S for inferring manmade/natural scenes
L re-labeled S for inferring natural/aritificially lighting scenes
H re-labeled S with Sun405 [49] for detecting horizons
D DeepFaceNet replicating [46] with web-crawled face data (50K, 5K, 200)
Y re-labeled D for age: 0-30, 30-60, 60+
G re-labeled D for gender: M, F
R re-labeled D for race: African American, White, Hispanic, East Asian,

South Asian, Other

Table 2: Description of classification tasks.

the relevant primal-dual scheme [8] to solve the online variant. How-
ever, the AMS problem as stated has several key differences from the
standard packing setting:
• Most fundamentally, the paging constraint (Equation 4) seeks to

impose a cache capacity constraint for every timestep. The frac-
tional packing problem strongly requires the number of constraints
to be fixed before streaming, and therefore independent of the
number of streaming elements.
• The mappings from the fractional size of the modelxik to accuracy

(axik), energy cost (exik), etc., are left unspecified in AMS. The
standard formulation requires these to be linear, e.g, axik =aixik.
• The standard formulation requires the upper bounds to be indepen-

dent of timestep. By requiring execution latency at timestep τik
to be less than the interval tτik+1−tτik , AMS introduces a time
dependency on the upper bound.
• The mutual exclusion criterion (Equation 6) introduces a non-

linearity over the variables.
Given the above wrinkles, it is unclear how to solve AMS with theoret-
ical guarantees. MCDNN instead uses heuristic algorithms motivated
by ideas from solutions to packing/paging problems.

5. SYSTEM DESIGN
Solving the AMS problem requires two main components. First,
the entire notion of approximate model scheduling is predicated on
the claim that the models involved allow a useful tradeoff between
resource usage and accuracy. Instead of using a single hand-picked
approximate variant of a model, MCDNN dynamically picks the
most appropriate variant from its model catalog. The model cata-
log characterizes precisely how model optimization techniques of
Section 3.2 affect the tradeoffs between accuracy and model-loading
energy on device (eix; Equation 2), model-execution energy on de-
vice (cix; Equation 2), model-execution dollar cost on cloud (dix′

ik
;

Equation 3), model size (sixik ; Equation 4) and model execution
latency (lix; Equation 5). Below, we provide a detailed measurement-
based characterization of these tradeoffs. Also, we introduce two
new model optimization techniques that exploit the streaming and
multi-programming setting introduced by MCDNN. The second
component for solving AMS is of course an online algorithm for
processing model request streams. We present a heuristically moti-
vated scheduling algorithm below. Finally, we describe briefly the
end-to-end system architecture and implementation that incorporates
these components.

5.1 Model catalogs
MCDNN generates model catalogs, which are maps from versions
of models to their accuracy and resource use, by applying model
optimizations to DNNs at varying degrees of optimization. In this
section, we focus on applying the popular factorization, pruning and
architectural-change approaches described in Section 3.2. MCDNN
applies the following traditional techniques:

30 40 50 60 70 80 90 100
Accuracy

101

102

103

m
e
m

o
ry

 (
M

B
)

V

A

S

M

L

H

D

Y

G

R

D

Y

G

R

Figure 4: Memory/accuracy tradeoffs in MCDNN catalogs.

Factorization: It replaces size-m× n weight matrices with their
factored variants of sizesm×k and k×n for progressively smaller
values of k. It typically investigates k= n

2
...n

8
. We factor both matrix

multiplication and convolutional layers.
Pruning: It restricts itself to reducing the bit-widths used to represent
weights in our models. We consider 32, 16 and 8-bit representations.
Architectural change: There is a wide variety of architectural trans-
formations possible. It concentrates on the following: (1) For con-
volutional and locally connected layers, increase kernel/stride size
or decrease number of kernels, to yield quadratic or linear reduction
in computation. (2) For fully connected layers, reduce the size of
the output layer to yield a linear reduction in size of the layer. (3)
Eliminate convolutional layers entirely.

The individual impact of these optimizations have been reported
elsewhere [22, 28, 44]. We focus here on understanding broad fea-
tures of the tradeoff. For instance, does the accuracy plunge with low-
ering of resources or does it ramp down gently? Do various gains and
trends persist across a large variety of models? How does resource use
compare to key mobile budget parameters such as wireless transmis-
sion energy and commercial cloud compute costs? How do various op-
tions compare with each other: for instance, how does the energy use
of model loading compare with that of execution (thus informing on
the importance of caching)? Such system-level, cross-technique ques-
tions are not typically answered by the model-optimization literature.

To study these questions, we have generated catalogs for ten dis-
tinct classification tasks (a combination of model architecture and
training data, the information a developer would input to MCDNN).
We use state-of-the art architectures and standard large datasets when
possible, or use similar variants if necessary. The wide variety of tasks
hints at the broad utility of DNNs, and partially motivates systems like
MCDNN for managing DNNs. Table 2 summarizes the classification
tasks we use. For each model in the catalog, we measure average accu-
racy by executing it on its validation dataset, and resource use via the
appropriate tool. We summarize key aspects of these catalogs below.

Figure 4 illustrates the memory/accuracy tradeoff in the MCDNN
catalogs corresponding to the above classification tasks. For each
classification task, we plot the set of variants produced by the model
above optimization techniques in a single color. MCDNN gener-
ated 10 to 68 variants of models for various tasks. We show here
points along the “Pareto curves” of the catalog i.e. the highest ac-
curacy/lowest memory frontier. Each point in the graph illustrates
the average accuracy and memory requirement of a single model
variant. Note that the y-axis uses a log scale. Three points are worth
noting. First, as observed elsewhere, optimization can significantly
reduce resource demands at very modest accuracy loss. For instance,
the VGGNet model loses roughly 4% average accuracy while using
almost 10× less memory. Second, and perhaps most critically for

45 50 55 60 65 70 75 80 85
accuracy (%)

0

5

10

15

20

25

e
n
e
rg

y
 (

J)

Wifi Xmit cost (0.5J)

LTE xmit cost
(0.9J)

Compute energy budget
(2.3J avg.)

V(Exec)

V(Load)

S(Exec)

S(Load)

D(Exec)

D(Load)

Figure 5: Energy/accuracy tradeoffs in MCDNN catalogs.

MCDNN, accuracy loss falls off gently with resource use. If small
reductions in memory use required large sacrifices in accuracy, the
resource/quality tradeoff at the heart of MCDNN would be unusable.
Third, these trends hold across a variety of tasks.

Figure 5 illustrates energy/accuracy tradeoffs for the face, object
and scene recognition tasks. Energy numbers are measured for an
NVIDIA Tegra K1 GPU on a Jetson board using an attached DC
power analyzer [1]. The figure shows both execution (crosses) and
load (dots) energies for each model variant. Once again, across tasks,
model optimizations yield significantly better resource use and mod-
est loss of classification accuracy. Further, the falloff is gentle, but
not as favorable as for memory use. In scene recognition, for instance,
accuracy falls of relatively rapidly with energy use, albeit from a very
low baseline. The horizontal dotted lines indicate the energy budget
(2.3J) to support 5 events/minute with 25% of a 2Ah battery, to trans-
mit a 10kB packet over LTE (0.9J), and over WiFi (0.5J) [12]. Note
the packet transmit numbers are representative numbers based on
measurements by us and others, but for instance LTE packet transmit
overhead may be as high as 12J for a single packet [24], and a 100ms
round trip over a 700mW WiFi link could take as little as 0.07J. For
the most part, standard model optimizations do not tip the balance
between local execution and transmission. If execution must happen
locally due to disconnection, the mobile device could support at most
a few queries per minute. Finally, as the colored dots in the figure
show, the energy to load models is higher by 2-5× than to execute
them: reducing model loading is thus likely a key to power efficiency.

Figure 6 illustrates latency/accuracy tradeoffs for the face, ob-
ject and scene recognition tasks. The figure shows time taken to
execute/load models on devices (crosses) and on the cloud (dots).
The measurements shown are for GPUs on-device (a Tegra K1) and
on-cloud (an NVIDIA k20), and for cloud-based CPUs. The dotted
lines again indicate some illuminating thresholds. For instance, a

45 50 55 60 65 70 75 80 85

accuracy (%)

100

101

102

103

104

la
te

n
cy

 (
m

s) cloud GPU latency budget (582ms)
@ $10/yr, 1 evt/min over 10 hrs
@ AWS g2.2xlarge instance

cloud GPU latency budget (9.7ms)
@ $10/yr, 1 evt/s

cloud CPU lat. budget (7645ms)
@ $10/yr, 1 evt/min
@ AWS c4.large

V(Dev GPU)

V(Cloud GPU)

V(Cloud CPU)

S(Dev GPU)

S(Cloud GPU)

S(Cloud CPU)

D(Dev GPU)

D(Cloud GPU)

D(Cloud CPU)

D(Dev GPU)

D(Cloud GPU)

D(Cloud CPU)

Figure 6: Latency/accuracy tradeoffs in MCDNN catalogs.

cloud-based GPU can already process one event per second on a
$10/year budget on a cloud GPU (which translates to 9.7ms per event)
for scene recognition and some variants of face recognition, but not
object recognition. A cloud-based CPU, however, can process one
event per minute but not one per second (roughly 130ms budget, not
shown) at this budget. The efficacy of model optimization carries
over to execution and loading speed.

5.2 Novel model optimizations
The streaming, multi-programmed setting is a relatively uncommon
one for model optimization. We therefore introduce two optimiza-
tions, one each to exploit streaming and multi-programming.

5.2.1 Specialization
One impressive ability of DNNs is their ability to classify accurately
across large numbers of classes. For instance, DeepFace achieves
roughly 93% accuracy over 4000 people [46]. When data flow from
devices embedded in the real world, however, it is well-known that
classes are heavily clustered by context. For instance you may tend to
see the same 10 people 90% of the time you are at work, with a long
tail of possible others seen infrequently; the objects you use in the
living room are a small fraction of all those you use in your life; the
places you visit while shopping at the mall are likewise a tiny fraction
of all the places you may visit in daily life. With model specialization,
MCDNN seeks to exploit class-clustering in contexts to derive more
efficient DNN-based classifiers for those contexts.

We adopt a cascaded approach (Figure 7(a)) to exploit this opportu-
nity. Intuitively, we seek to train a resource-light “specialized” variant
of the developer-provided model for the few classes that dominate
each context. Crucially, this model must also recognize well when
an input does not belong to one of the classes; we refer to this class
as “other” below. We chain this specialized model in series with the
original “generic” variant of the model, which makes no assumptions
about context, so that if the specialized model reports that an input is
of class “other”, the generic model can attempt to further classify it.

Figure 7(b) shows the machinery in MCDNN to support model
specialization. The profiler maintains a cumulative distribution func-
tion (CDF) of the classes resulting from classifying inputs so far to
each model. The specializer, which runs in the background in the
cloud, determines if a small fraction of possible classes “dominate”
the CDF for a given model. If so, it adds to the catalog specialized
versions of the generic variants (stored in the catalog) of the model
by “re-training” them on a subset of the original data dominated by
these classes. If a few classes do indeed dominate strongly, we expect
even smaller models, that are not particularly accurate on the general
inputs, to be quite accurate on inputs drawn from the restricted con-
text. We seek to minimize the overhead of specialization to 10s or
less, so we can exploit class skews lasting as little as five minutes,
a key to making specialization broadly useful.

Implementing the above raises three main questions. What is the
criterion for whether a set of classes dominates the CDF? How can
models be re-trained efficiently? How do we avoid re-training too
many variants of models and focus our efforts on profitable ones? We
describe how MCDNN addresses these.

The specializer determines that a CDF C is n, p-dominated if
n of its most frequent classes account for at least fraction p of its
weight. For instance, if 10 of 4000 possible people account for
90% of faces recognized, the corresponding CDF would be (10,0.9)-
dominated. The specializer checks for n,p-dominance in incoming
CDFs. MCDNN currently takes the simple approach of picking
n∈{7,14,21} and p∈{0.6,0.7,0.8,0.9,0.95}. Thus, for instance,
if the top 7 people constitute over 60% of faces recognized, the spe-

specializer

profiler
class

CDF
over
classes

training data

specialized
models

generic
models

to scheduler

from classifier

input

class

specialized
variant

class

generic
variantcheck

for
“other”

(a) (b)

catalog

Figure 7: Model specialization: (a) Cascading specialized models.
(b) MCDNN infrastructure for specialization.

cializer would add model variants to the catalog that are specialized
to these seven faces.

The straightforward way to specialize a model in the catalog to
a restricted context would be to re-train the schema for that model
on the corresponding restricted dataset. Full retraining of DNNs is
often expensive, as we discussed in the previous section. Further,
the restricted datasets are often much smaller than the original ones;
the reduction in data results in poorly trained models. The MCDNN
specializer therefore uses a variant of the in-place transformation dis-
cussed in the previous section to retrain just the output layer, i.e., the
last fully-connected layer and softmax layers, of the catalog model
on the restricted data. We say that we re-target the original model.
When re-training the output layer, the input values are the output of
the penultimate layer, not the original training data, i.e., the input
to the whole model. To obtain the output of the penultimate layer,
we need flow the whole-model input through all lower layers. In
an optimization we call pre-forwarding, we flow all training inputs
through lower layers at compile time in order to avoid doing so at
specialization time, an important optimization since executing lower
layers cost hundreds of MFLOPs as mentioned before.

Finally, even with relatively fast re-training cost, applying it to
every variant of a model and for up to n×p contexts is potentially ex-
pensive at run time. In fact, typically many of the specialized variants
are strictly worse than others: they use more resources and are less
accurate. To avoid this run-time expense, we use support from the
MCDNN compiler. Note that the compiler cannot perform relevant
specialization because the dominant classes are not known at compile
time. However, for each model variant and (n,p) pair, the compiler
can produce a representative dataset with randomly selected subsets
of classes consistent with the (n,p) statistics, retarget the variant to
the dataset and winnow out models that are strictly worse than others.
At run time, the specializer can restrict itself to the (hopefully many
fewer) remaining variant/context pairs.

5.2.2 Sharing
Until now, we have considered optimizing individual models for
resource consumption. In practice, however, multiple applications
could each have multiple models executing at any given time, further
straining resource budgets. The model sharing optimization is aimed
at addressing this challenge.

Figure 8(a) illustrates model sharing. Consider the case where
(possibly different) applications wish to infer the identity (ID), race,
age or gender of incoming faces. One option is to train one DNN for
each task, thus incurring the cost of running all four simultaneously.
However, recall that layers of a DNN can be viewed as increasingly
less abstract layers of visual representation. It is conceivable there-
fore that representations captured by lower levels are shareable across
many high-level tasks. If this were so, we would save the cost of

input

intermediate
values

face
ID

race age
gender …

router
input

(a) (b)

model-fragment cache

Figure 8: Model sharing: (a) Sharing model fragments for facial
analysis. (b) MCDNN infrastructure for sharing, replicated in the
client and cloud.

re-executing the shared bottom layers. Given that the lower (convolu-
tional) layers of a DNN dominate its computational cost, the savings
could be considerable. Indeed, we will show in the results section that
re-targeting, where the shared fragment is close to the whole model
in size is commonly applicable.

Implementing sharing requires cooperation between the MCDNN
compiler and runtime. When defining input model schema, the com-
piler allows programmers to pick model schemas or prefixes of model
schemas from a library appropriate for each domain. We currently
simply use prefixes of AlexNet, VGGNet and DeepFace and their
variants. Suppose the model schema s input to the MCDNN compiler
has the form s = sl + su, and t/v is the training/validation data,
where layers sl are from the library and intended for sharing. Letml

be the trained version of sl, also available pre-trained from the library.
The compiler assembles a trained modelml+mu consisting of two
fragments. The lower fragment isml. The upper fragment,mu, is
a freshly trained variant of su, trained on t′ = ml(t),v

′ = ml(v),
i.e., the training “input” to the upper fragment is the result of running
the original training input through the lower fragment. The compiler
records the fragments and their dependence in the catalog passed to
the runtime. Note that since the upper shared fragment needs to
be re-trained sharing is not simply common-subexpression elim-
ination on DNNs.

Figure 8(b) illustrates the runtime infrastructure to support shar-
ing. The scheduler loads complete models and model-fragments into
memory for execution, notifying the router of dependencies between
fragments. Given an input for classification the router sends it to
all registered models (or their fragments). In the cases of fragments
without output layers, the router collects their intermediate results
and sends them on to all dependent fragments. The results of output
layers are the classification results of their respective models. The
router returns classification results as they become available.

5.3 MCDNN’s approximate model scheduler
When applications are installed, they register with the scheduler a
map from input types to a catalog of model fragments to be used to
process those inputs, and handlers to be invoked with the result from
each model. The catalog is stored on disk. When a new input appears,
the scheduler (with help from the router and profiler) is responsible
for identifying the model variants that need to be executed in response,
paging if needed the appropriate model variants in from disk to the
in-memory model-fragment cache in the appropriate location (i.e.,
on-device or on-cloud) for execution, executing the models on the
input and dispatching the results to the registered handlers.

This online scheduling problem is challenging because it combines
several elements considered separately in the scheduling literature.
First, it has an “online paging” element [7], in that every time an input
is processed, it must reckon with the limited capacity of the model
cache. If no space is available for a model that needs to be loaded,
it must evict existing models and page in new ones. Second, it has

Algorithm 1 The MCDNN scheduler.
1: function PROCESS(i,n) . i: input, n: model name
2: if l,m←CACHELOOKUP(n) 6=null then . Cache hit
3: r← EXEC(m,i) . Classify input i using model m
4: async CACHEUPDATE(n,(l,m)) . Update cache in background
5: else . Cache miss
6: m←CACHEUPDATE(n)
7: r← EXEC(m,i)
8: end if
9: return r
10: end function
11:
12: . Update the cache by inserting the variant of n most suited to current resource

availability in the right location.
13: function CACHEUPDATE(n,(l,m)=nil) . Insert n; variant m is already in
14: ed,ecs,cc←CALCPERREQUESTBUDGETS(n)
15: ad,as,ac←CATALOGLOOKUPRES(n,ed,ecs,cc,m)
16: a∗,l∗←maxlal,argmaxlal . Find optimal location and its accuracy
17: v∗←CATALOGLOOKUPACC(n,a∗) . Look up variant with accuracy a∗

18: m←CACHEINSERT(l∗,v∗) if m.v 6=v∗ or l 6= l∗ else m
19: return m
20: end function
21:
22: . Calculate energy, energy/dollar and dollar budgets for executing model n on

the mobile device, split between device/cloud and cloud only.
23: function CALCPERREQUESTBUDGETS(n)
24: e,c←REMAININGENERGY(),REMAININGCASH()
25: .Allocate remaining resource r so more frequent requests get more resources.

fi is the profiled frequency of model mi, measured since it was last paged into
the cache. T and r are the remaining time and resource budgets. ∆rn is the cost
to load n. ∆tn is the time since n was loaded, set to∞ if n is not in any cache.

26: def RESPERREQ(r,l)=(r−∆rnT/∆tn)fn/(TΣi∈Cachelf
2
i)

27: ed,cd←RESPERREQ(e,“dev”),RESPERREQ(c,“cloud”)
28: . Account for split models. tn is the fraction of time spent executing the

initial fragment of model n relative to executing the whole.
29: es,cs←edtn,cd(1−tn)
30: return ed,(es,cs),cd
31: end function
32:
33: . Find the accuracies of the model variants for model n in the catalog that best

match energy budget e, dollar budget c and split budget s. If the catalog lookup is
due to a miss in the cache (i.e., m is nil, revert to a model that loads fast enough.

34: function CATALOGLOOKUPRES(n,e,s,c,m)
35: . CLX2A(n,r) returns accuracy of model n in location X using resources r
36: ae,as,ac←CLD2A(n,e),CLS2A(n,s),CLC2A(n,c)
37: . On a miss, bound load latency. a∗l is the accuracy of the most accurate

model that can be loaded to location l at acceptable miss latency.
38: if m=nil then
39: ae,as,ac←min(a∗e ,ae),min(a∗s ,as),min(a∗c ,ac)

40: end if
41: return ae,as,ac
42: end function
43:
44: . Insert variant v in location l, where l∈“dev”,“split”,“cloud”
45: function CACHEINSERT(l,v)
46: s← SIZE(v)
47: if (a= CACHEAVAILABLESPACE(l))<s then
48: CACHEEVICT(l,s−a) . Reclaim space by evicting LRU models.
49: end if
50: m←CACHELOAD(l,v) . Load variant v to location l
51: return m
52: end function

an “online packing” [8] element: over a long period of use (we target
10 hrs), the total energy consumed on device and the total cash spent
on the cloud must not exceed battery budgets and daily cloud cost
budgets. Third, it must consider processing a request either on-device,
on-cloud or split across the two, introducing a multiple-knapsack ele-
ment [9]. Finally, it must exploit the tradeoff between model accuracy
and resource usage, introducing a fractional aspect.

It is possible to show that even a single-knapsack variant of this
problem has a competitive ratio lower-bounded proportional to logT ,
where T is the number of incoming requests. The dependency on T
indicates that no very efficient solution exists. We are unaware of a
formal algorithm that approaches even this ratio in the simplified set-
ting. We present a heuristic solution here. The goal of the scheduler is
to maximize the average accuracy over all requests subject to paging

compiler

input type
model schema

training/validation data

development time

cloud runtime
scheduler

data router
profiler

specialization time

apps

input input

classes

classes

trained
model
catalog

device runtime
scheduler

data router

run time

specializer

statsspecialized models

clouddevice

Figure 9: Architecture of the MCDNN system.

and packing constraints. The overall intuition behind our solution
is to back in/out the size (or equivalently, accuracy) of a model as its
use increases/decreases; the amount of change and the location (i.e.,
device/cloud/split) changed to are based on constraints imposed by
the long-term budget.

Algorithm 1 provides details when processing input i on model
n. On a cache miss, the key issues to be decided are where (device,
cloud or split) to execute the model (Line 16) and which variant to
execute (Line 17). The variant and location selected are the ones with
the maximum accuracy (Line 17) under estimated future resource
(energy on the device, and cash on the cloud) use (Lines 14,15).

To estimate future resource use, for model n (Lines 22-33), we
maintain its frequency of use fn, the number of times it has been
requested per unit time since loading. Let us focus on how this es-
timation works for the on-device energy budget (Line 27) (cloud
cash budgets are identical, and device/cloud split budgets (Line 29)
follow easily). If e is the current total remaining energy budget on
the device, and T the remaining runtime of the device (currently
initialized to 10 hours), we allocate to n a per-request energy budget
of en = efn/TΣif

2
i , where the summation is over all models in

the on-device cache. This expression ensures that every future re-
quest for model n is allocated energy proportional to fn and, keeping
in mind that each model i will be used Tfi times, that the energy
allocations sum to e in total (i.e., ΣieifiT = e). To dampen oscil-
lations in loading, we attribute a cost ∆en to loading n. We further
track the time ∆tn since the model was loaded, and estimate that
if the model were reloaded at this time, and it is reloaded at this
frequency in the future, it would be re-loaded T/∆tn times, with
total re-loading cost ∆enT/∆tn. Discounting this cost from to-
tal available energy gives a refined per-request energy budget of
en=(e−∆enT/∆tn)fn/TΣif

2
i (Line 26).

Given the estimated per-request resource budget for each location,
we can consult the catalog to identify the variant providing the max-
imum accuracy for each location (Line 36) and update the cache at
that location with that variant (Line 18). Note that even if a request
hits in the cache, we consider (in the background) updating the cache
for that model if a different location or variant is recommended. This
has the effect of “backing in”/“backing out” models by accuracy
and dynamically re-locating them: models that are used a lot (and
therefore have high frequencies fn) are replaced with more accurate
variants (and vice-versa) over time at their next use.

5.4 End-to-end architecture
Figure 9 illustrates the architecture of the MCDNN system. An appli-

cation developer interested in using a DNN in resource-constrained
settings provides the compiler with the type of input to which the
model should be applied (e.g., faces), a model schema, and training
data. The compiler derives a catalog of trained models from this data,
mapping each trained variant of a model to its resource costs, accu-
racy, and information relevant to executing them (e.g., the runtime
context in which they apply). When a user installs the associated
application, the catalog is stored on disk on the device and cloud and
registered with the MCDNN runtime as handling input of a certain
type for a certain app.

At run time, inputs for classification stream to the device. For each
input, the scheduler selects the appropriate variant of all registered
models from their catalogs, selects a location for executing them,
pages them into memory if necessary, and executes them. Execut-
ing models may require routing data between fragments of models
that are shared. After executing the model, the classification results
(classes) are dispatched to the applications that registered to receive
them. Finally, a profiler continuously collects context statistics on
input data. The statistics are used occasionally by a specializer run-
ning in the background to specialize models to detected context, or
to select model variants specialized for the context.

6. EVALUATION
We have implemented the MCDNN system end-to-end. We adapt

the open source Caffe [26] DNN library for our DNN infrastructure.
As our mobile device, we target the NVIDIA Jetson board TK1 board
[3], which includes the NVIDIA Tegra K1 mobile GPU (with roughly
300 gflops nominal peak performance), a quad-core ARM Cortex
C15 CPU, and 2GB of shared memory between CPU and GPU. The
Jetson is a developer-board variant of the NVIDIA Shield tablet [4],
running Ubuntu 14.04 instead of Android as the latter does. For cloud
server, we use a Dell PowerEdge T620 with an NVIDIA K20c GPU
(with 5GB dedicated memory and a nominal peak of 3.52 tflops),
a 24-core Intel Xeon E5-2670 processors with 32 GB of memory
running Ubuntu 14.04. Where cloud costs are mentioned, we use
Amazon AWS G2.2xlarge single-core GPU instances and c4.large
CPU instances, with pricing data obtained in early September 2015.
All energy measurements mentioned are directly measured unless oth-
erwise specified, using a Jetson board and Shield tablet instrumented
with a DC power analyzer [1].

Our main results are:

• Stand-alone optimizations yield 4-10× relative improvements in
memory use of models with little loss of accuracy. In absolute
terms, this allows multiple DNNs to fit within mobile/embedded
device memory. However, the energy used by these models, though
often lower by 2× or more, is high enough that it is almost always
more energy-efficient to offload execution when the device is con-
nected to the cloud. Execution latencies on cloud CPU and GPU
are also improved by a similar 2× factor, adequate to apply all but
the largest models at 1 frame/minute at an annual budget of $10,
but not enough to support a realistic 1 frame/second.
• Collective optimizations (specialization and sharing), when appli-

cable, can yield 10× to 4 orders of magnitude reductions in mem-
ory consumption and 1.2× to over 100× reductions in execution
speed and energy use. These improvements have significant qual-
itative implications. These models can fit in a fraction of a modern
phone’s memory making them suitable for both consumer mobile
devices and for memory-constrained embedded devices such as
smart cameras. It is often less expensive to execute them locally
than to offload over LTE (or sometimes even WiFi). Finally, it is fea-
sible to process 1 frame/second on a cloud-based CPU at $10/year.
• Both selecting which model to execute and where to run dynam-

ically, as MCDNN does, can result in significant improvement in

55 60 65 70 75 80 85 90 95 100
accuracy (%)

10-4

10-3

10-2

10-1

100

101

102

103

m
e
m

o
ry

 (
M

B
)

V (spec.)

S (spec.)

D (spec.)

D (shared)

S (shared)

(a) Memory consumption

55 60 65 70 75 80 85 90 95 100
accuracy (%)

0.0

0.5

1.0

1.5

2.0

2.5

e
n
e
rg

y
 (

J)

Wifi xmit cost (0.5J)

LTE xmit cost (0.9J)

Compute energy budget
(2.3J avg.)

V (spec.)

S (spec.)

D (spec.)

D (shared)

S (shared)

(b) Energy consumption

60 65 70 75 80 85 90 95 100
accuracy (%)

10-1

100

101

102

103

la
te

n
cy

 (
m

s)

Dev GPU

Cloud GPU

Cloud CPU

V (spec.)

S (spec.)

D (spec.)

D (shared)

S (shared)

(c) Execution latency

Figure 10: Impact of collective optimization (best viewed in color).

Task (variant) Time to specialize (s)
Full re-train + Retarget + Pre-forward

Face (C0) 2.6e4 30.4 4.3
Face (C4) 1.4e4 24.0 4.2
Object (A0) 4.8e5 152.4 14.2
Object (A9) 9.1e4 123.0 14.1

Table 3: Runtime overhead of specialization.

the number of requests served at fixed energy and dollar budget
with little loss in accuracy. Essentially, common variations in
classification task mix, optimization opportunities (such a special-
ization and sharing) and cloud-connectivity latencies defeat static
model selection and placement schemes.
• MCDNN seems well-matched with emerging applications such as

virtual assistants based on wearable video and query-able personal
live video streams such as Meerkat[2] or Periscope[5]. We show
promising early measurements supporting these two applications.

6.1 Evaluating optimizations
Figure 10 shows the impact of collective optimizations, special-

ization and sharing. For specialization, we train and re-target pro-
gressively simpler models under increasingly favorable assumption
of data skew, starting from assuming that 60% of all classes drawn
belong to a group of at most size 21 (e.g., 60% of person sightings
during a period all come from at most the same 21 people) to 90%/7
classes. We test these models on datasets with the same skew (e.g.,
60% of faces selected from 21 people, remaining selected randomly
from 1000 people). The size, execution energy consumed, and la-
tency of the model executed under these assumptions remains fixed,
only the accuracy of using the model changes, resulting in horizontal
line segments in the figure. We show mean, min and max under
these assumptions. Two observations are key. First, resource usage
is dramatically lower than even the statically optimized case. For
instance (Figure 10a; compare with Figure 5), specialized object
recognition consumes 0.4-0.7mJ versus the stand-alone-optimized
7-16mJ. Second, accuracy is significantly higher than in the unspe-
cialized setting. For instance the 0.4mJ-model has recognition rates
of 70-82%, compared to the baseline 69% for the original VGGNet.
Latency wins are similar. These models take less energy to run on the
device than to transmit to the cloud, and easily support 1 event per
second on a $10/year GPU budget, and often on a CPU budget as well.

There is no free lunch here: specialization only works when the
incoming data has class skew, i.e, when a few classes dominate over
the period of use of the model. Class skew may seem an onerous
restriction if the skew needs to last for hours or days. Table 3 details
the time required to specialize a few representative variants of models
including two models for face recognition and two for object recog-

nition (C4 is a smaller variant of C0 and A9 of A0; A0 is the standard
AlexNet model for object recognition). Re-training these models
from scratch takes hours to days. However, MCDNN’s optimizations
cut this overhead dramatically. If we only seek to re-target the model
(i.e., only retrain the top layer), overhead falls to tens of seconds
and pre-forwarding (see Section 5.2.1) training data through lower
layers yields roughly 10-second specialization times. MCDNN is
thus well positioned to exploit data skew that lasts for as little as
tens of seconds to minutes, a capability that we believe dramatically
broadens the applicability of specialization.

The benefits of sharing, when applicable, are even more striking.
For scene recognition, assuming that the baseline scene recognition
model (dataset S in Table 2) is running, we share all but its last layer
to infer three attributes: we check if the scene is man-made or not
(dataset M), whether lighting is natural or artificial (L), and whether
the horizon is visible (H). Similarly, for face identification (D), we
consider inferring three related attributes: age (Y), gender (G) and
race (R). When sharing is feasible, the resources consumed by shared
models are remarkably low: tens of kilobytes per model (cyan and
purple dots in Figure 10a), roughly 100mJ of energy consumption
(Figure 10b) and under 1ms of execution latency (Figure 10c), repre-
senting over 100× savings in these parameters over standard models.
Shared models can very easily run on mobile devices. Put another way,
inferring attributes is “almost free” given the sharing optimization.

6.2 Evaluating the runtime
Given an incoming request to execute a particular model, MCDNN

decides which variant of the model to execute and where to execute it.
Selecting the right variant is especially important when executing

on-device because the device has a finite-sized memory and paging
models into and out of memory can be quite expensive in terms of
power and latency as discussed in the previous section. MCDNN
essentially pages in small variants of models and increases their size
over time as their relative execution frequency increases. To gauge the
benefit of this scheme, in Figure 11, we use trace-driven evaluation to
compare this dynamic scheme to two schemes that page fixed-sized
models in LRU-fashion in and out of a 600MB-sized cache. In the
“Original” scheme, the models used are the unoptimized models. In
the “Best” scheme, we pick models from the knees of the curves in
Figure 4, so as to get the best possible accuracy-to-size tradeoff. In
the “All Models” scheme, the MCDNN model picks an appropriate
model variant from a catalog of model sizes.

We generate traces of model requests that result in increasing
cache load rates with respect to the original model: the load rate is
the miss-rate weighted by the size of the missed model. We generate
10 traces per load rate. Each trace has roughly 36000 requests (one

0 100 200 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
fr

a
ct

io
n
 o

f
re

q
u
e
st

s
se

rv
e
d

% Requests Serviced

0 100 200 300

cache load rate (MB/request)

0

2

4

6

8

10

12

14

16

18

e
n
e
rg

y
/r

e
q
u
e
st

 (
J)

Energy Consumed/Request

0 100 200 300
0

10

20

30

40

50

60

a
cc

u
ra

cy
/r

e
q
u
e
st

 (
%

)

Average Accuracy

Original Model

Best Model

All Models

Figure 11: Impact of MCDNN’s dynamically-sized caching scheme.

per second over 10 hours). Due to the energy required to service each
request, none of the schemes is able to service all requests. The figure
shows the number of requests served, the average energy expended
per request, and the average accuracy per served request. The sum-
mary is that MCDNN constantly reduced the size of models in the
cache so that even when the cache is increasingly oversubscribed with
respect to fixed-size models, it still fits all the reduced-size models.
As a result, MCDNN incurs minimal paging cost. This results in
a significantly higher percentage of requests served, lower aver-
age energy per request (in fact, the average energy remains fixed
at execution cost for models rather than increasing amounts of
paging costs), at a modest drop in accuracy. Note that although
the original and best models have higher accuracy for requests that
were served, they serve far fewer requests.

We now move to the decision of where to execute. For each re-
quest, MCDNN uses dynamically estimated resource availability and
system costs to decide where to execute. Given the relatively low cost
of transmitting frames, a good strawman is a “server first” scheme
that always executes on the cloud if cloud-budget and connectivity
are available and on the device otherwise. This scheme if often quite
good, but fails when transmission costs exceed local execution costs,
which may happen due to the availability of inexpensive specialized
or shared models (Figure 10b), an unexpectedly large client execution
budget and/or high transmission energy costs (e.g., moving to a loca-
tion far from the cloud and using a less energy-friendly transmission
modality such as LTE). We examine this tradeoff in Figure 12.

Assuming full connectivity, day-long traces, and for three different
transmission costs (0.1J, 0.3J and 0.5J), we examine the fraction of
total requests served as increasing numbers of specialization and
sharing opportunities materialize through the day. In server-first case,
all requests are sent to the server, so that the number of requests
served depends purely on transmission cost. MCDNN, however,
executes locally when it is less expensive to do so, thus handling
a greater fraction of requests than the server-first configuration,
and an increasing fraction of all requests, as specialization and
sharing opportunities increase. When transmit costs fall to 100mJ
per transmit (blue line), however, remote execution is unconditionally
better so that the two policies coincide.

6.3 MCDNN in applications
To understand the utility of MCDNN in practice, we built rough pro-

totypes of two applications using it. The first, Glimpse, is a system for

0.1 0.2 0.3 0.4 0.5
specialized proportion

0

20

40

60

80

100

%
 o

f
to

ta
l
re

q
u
e
st

s
se

rv
e
d

SendE=0.1J

0.3J

0.5J

Resource Aware

Server First

Figure 12: Impact of MCDNN’s dynamic execution-location
selection.

analyzing wearable camera input so as to provide personal assistance,
essentially the scenario in Section 2. We connect the camera to an
NVIDIA Shield tablet and thence to the cloud. In a production system,
we assume a subsystem other than MCDNN (e.g., face detection hard-
ware, or more generally a gating system [21]) that detects interesting
frames and passes them on to MCDNN for classification. MCDNN
then analyses these frames on the wearable and cloud. We currently
use software detectors (which are themselves expensive) as a proxy
for this detection sub-system. Figure 13 shows a trace reflecting
MCDNN’s behavior on face analysis (identification, age/race/gender
recognition) and scene recognition tasks over a day4. The bottom
panel shows the connectivity during the day. The straw man of always
running on client has good accuracy but exhausts the battery. Al-
ways sending to cloud suffers during disconnected periods. MCDNN
makes the trade-offs necessary to keep running through the day.

Our second application, Panorama, is a system that allows text
querying of personal live video streams [2, 5] in real time. In this case,
potentially millions of streams are sent to the cloud, and users can type
textual queries (e.g., “man dog play”) to discover streams of interest.
The central challenge is to run VGGNet at 1-3 frames per second at
minimal dollar cost. The key observation is that these streams have
high class skew just as with wearable camera streams. We therefore
aimed to apply specialized versions of VGGNet to a sample of ten 1-
to-5-minute long personal video streams downloaded from YouTube;
we labeled 1439 of 39012 frames with ground truth on objects present.
VGGNet by itself takes an average of 364ms per frame to run on a K20
GPU at an average accuracy of 75%. MCDNN produces specialized
variants of VGGNet for each video and reduces processing overhead
to 42ms at an accuracy of 83%. Panorama does not run on the end-user
device: MCDNN is also useful in cloud-only execution scenarios.

7. RELATED WORK
MCDNN provides shared, efficient infrastructure for mobile-cloud
applications that need to process streaming data (especially video)
using Deep Neural Networks (DNNs). MCDNN’s main innova-
tion is exploiting the systematic approximation of DNNs toward
this goal, both revisiting scheduling to accommodate approximation,
and revisiting DNN approximation techniques to exploit stream and
application locality.

Recent work in the machine learning community has focused on

4The data fed to MCDNN in this experiment are synthesized based
on statistics collected from the real world; at the time of writing
we did not have Human Subjects Board permissions to capture and
analyze facial data from the wild.

0
20
40
60
80

100

M
C

D
N

N
A

cc
u
ra

cy
 (

%
)

Face Gender Age Race Scene

0
20
40
60
80

100

S
e
rv

e
r

O
n
ly

A
cc

u
ra

cy
 (

%
)

0
20
40
60
80

100

C
lie

n
t

O
n
ly

A
cc

u
ra

cy
 (

%
)

0 5000 10000 15000 20000 25000 30000 35000
Timeline (s)

Disconnected

Connected

C
o
n
n
e
ct

iv
it

y

Figure 13: Accuracy of each application over time for the Glimpse
usage. Each line shows a single application.

reducing the overhead of DNN execution. For important models such
as speech and object recognition, research teams have spent consid-
erable effort producing manually optimized versions of individual
DNNs that are efficient at run-time [32, 42, 45]. Several recent efforts
in the machine learning community have introduced automated tech-
niques to optimize DNNs, mostly variants of matrix factorization and
sparsification to reduce space [13, 20, 40, 50, 51] and computational
demands [25, 28, 40, 42]. Many of these efforts support the folk wis-
dom that DNN accuracy can broadly be traded off for resource usage.
MCDNN is complementary to these efforts, in that it is agnostic to
the particular optimizations used to produce model variants that trade
off execution accuracy for resources. Our primary goal is to develop
a novel approximating runtime that selects between these variants
while obeying various practical resource constraints over the short
and long term. In doing so, we further provide both a more compre-
hensive set of measurements of accuracy-resource tradeoffs for DNNs
than any we are aware of, and devise two novel DNN optimizations
that apply in the streaming and multi-programming settings.

The hardware community has made rapid progress in developing
custom application-specific integrated circuits (ASICs) to support
DNNs [11, 14, 35]. We view these efforts as complementary to
MCDNN, which can be viewed as a compiler and runtime frame-
work that will benefit most underlying hardware. In particular, we
believe that compiler-based automated optimization of DNNs, cross-
application sharing of runtime functionality, and approximation-
aware stream scheduling will all likely still be relevant and useful
whenever (even very efficient) ASICs try to support multi-application,
continuous streaming workloads. In the long term, however, it is
conceivable that multiple DNNs could be run concurrently and at
extremely low power on common client hardware, making system
support less important.

Recent work in the mobile systems community has recognized that
moving sensor-processing from the application (or library) level to
middleware can help avoid application-level replication [34, 36, 43].
MCDNN may be viewed as an instance of such middleware that is
specifically focused on managing DNN-based computation by using
new and existing DNN optimizations to derive approximation ver-
sus resource-use tradeoffs for DNNs, and in providing a scheduler
that reasons deeply about these tradeoffs. We have recently come to
know of work on JouleGuard, that provides operating-system sup-
port, based on ideas from reinforcement learning control theory, for
trading off energy efficiency for accuracy with guarantees across ap-
proximate applications that provide an accuracy/resource-use “knob”
[23]. MCDNN is restricted to characterizing (and developing) such

“knobs” for DNNs processing streaming workloads in particular. On
the other hand, MCDNN schedules to satisfy (on a best-effort ba-
sis, with no guarantees) memory use and cloud-dollar constraints in
addition to energy. MCDNN’s technical approach derives from the
online algorithm community [7, 8]. Understanding better how the
two approaches relate is certainly of strong future interest.

Off-loading from mobile device to cloud has long been an option to
handle heavyweight computations [16, 19, 38]. Although MCDNN
supports both off- and on-loading, its focus is on approximating a
specific class of computations (stream processing using DNNs), and
on deciding automatically where to best execute them. MCDNN is
useful even if model execution is completely on-client. Although
we do not currently support split execution of models, criteria used
by existing work to determine automatically whether and where to
partition computations would be relevant to MCDNN.

Finally, we focus on the novelty of the two DNN optimizations we
propose, specialization and sharing. Specialization is based on the
classic technique [48] in machine-learning to structure classifiers as
cascades. Early stages of the cascade are supposed to intercept com-
mon, easy-to-classify cases and return results without invoking more
expensive later stages. Recent work has even looked into cascading
DNNs [33]. All efforts to date have assumed that the class skew is
evident at training time. The key difference in MCDNN’s approach
is that it detects class skew at test time and dynamically produces
cascaded classifiers as appropriate. This dynamic approach dramat-
ically broadens the settings in which cascading can be applied: we
believe that dynamically-varying class skews are far more common
than static ones. The machinery to detect class skew and to rapidly
produce cascade layers is unique to MCDNN.

Cross-application sharing, has similarities to standard common
sub-expression elimination (CSE) or memoization, in that two compu-
tations are partially unified to share a set of prefix computations at run-
time. Sharing is also similar to “multi-output” DNNs trained by the
machine learning community, where related classification tasks share
model prefixes and are jointly trained. MCDNN’s innovation may be
seen as supporting multi-output DNNs in a modular fashion: differ-
ent from jointly-trained multi-output models, the “library” model is
defined and trained separately from the new model being developed.
Only the upper fragment of the new model is trained subsequently.
Further, to account for the fact that the (typically expensive) library
model may not be available for sharing at runtime, the MCDNN com-
piler must train versions that do not assume the presence of a library
model, and the MCDNN runtime must use the appropriate variant.

8. CONCLUSIONS
We address the problem of executing Deep Neural Networks

(DNNs) on resource-constrained devices that are intermittently con-
nected to the cloud. Our solution combines a system for optimizing
DNNs that produces a catalog of variants of each model and a run-time
that schedules these variants on devices and cloud so as to maximize
accuracy while staying within resource bounds. We provide evidence
that our optimizations can provide dramatic improvements in DNN
execution efficiency, and that our run-time can sustain this perfor-
mance in the face of the variation of day-to-day operating conditions.

Acknowledgments
We thank anonymous reviewers and our shepherd Deepak Ganesan
for their helpful comments. We thank Tiffany Chen for helping with
measurements related to the Panorama system. We thank Ishai Men-
ache and Konstantin Makarychev for discussions and insights on the
theory related to the AMS proble. This work was supported by the
National Science Foundation (CNS-1318396 and CNS-1420703).

References
[1] Pwrcheck manual. http://www.westmountainradio.com/pdf/

PWRcheckManual.pdf, 2015.

[2] Meerkatstreams website. http://meerkatstreams.com/, 2016.

[3] NVIDIA Jetson TK1 development board. http://www.nvidia.
com/object/jetson-tk1-embedded-dev-kit.html, 2016.

[4] NVIDIA shield website. http://shield.nvidia.com/, 2016.

[5] Twitter periscope website. http://www.periscope.tv, 2016.

[6] S. Bambach, J. M. Franchak, D. J. Crandall, and C. Yu.
Detecting hands in childrens egocentric views to understand
embodied attention during social interaction. Proceedings of
the Annual Meeting of the Cognitive Science Society (CogSci),
pages 134–139, 2014.

[7] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual
randomized algorithm for weighted paging. Journal of the
ACM (JACM), 59(4):19, 2012.

[8] N. Buchbinder and J. Naor. Online primal-dual algorithms for
covering and packing. Mathematics of Operations Research,
34(2):270–286, 2009.

[9] C. Chekuri and S. Khanna. A polynomial time approximation
scheme for the multiple knapsack problem. SIAM Journal on
Computing, 35(3):713–728, 2005.

[10] K. Chellapilla, S. Puri, and P. Simard. High performance
convolutional neural networks for document processing. In
Proceedings of the 10th International Workshop on Frontiers
in Handwriting Recognition (IWFHR), 2006.

[11] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam.
DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning. In Proceedings of the 9th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[12] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakr-
ishnan. Glimpse: Continuous, real-time object recognition on
mobile devices. In Proceedings of The 13th ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2015.

[13] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen.
Compressing neural networks with the hashing trick. In
Proceedings of the 32nd International Conference on Machine
Learning (ICML), pages 2285–2294, 2015.

[14] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and
Sze, Vivienne. Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. In
Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), pages 262–263, 2016.

[15] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep
learning training system. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2014.

[16] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: Making smartphones
last longer with code offload. In Proceedings of the 8th
International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2010.

[17] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang,
and A. Y. Ng. Large scale distributed deep networks. In
Proceedings of the Twenty-sixth Annual Conference on Neural
Information Processing Systems (NIPS), 2012.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 248–255, 2009.

[19] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan. Towards wearable cognitive assistance. In
Proceedings of the 12th International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2014.

[20] S. Han, H. Mao, and W. J. Dally. Deep compression: Compress-
ing deep neural network with pruning, trained quantization
and huffman coding. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

[21] S. Han, R. Nandakumar, M. Philipose, A. Krishnamurthy, and
D. Wetherall. GlimpseData: Towards continuous vision-based
personal analytics. In Proceedings of the 1st Workshop on
Physical Analytics (WPA), 2014.

[22] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Pro-
ceedings of the Twenty-ninth Annual Conference on Neural In-
formation Processing Systems (NIPS), pages 1135–1143. 2015.

[23] H. Hoffmann. Jouleguard: Energy guarantees for approximate
applications. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP), pages 198–214, 2015.

[24] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance and power
characteristics of 4g LTE networks. In Proceedings of the 10th
International Conference on Mobile Systems, Applications,
and Services (MobiSys), pages 225–238, 2012.

[25] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convo-
lutional neural networks with low rank expansions. In Proceed-
ings of the British Machine Vision Conference (BMVC), 2014.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of
the 22nd ACM international conference on Multimedia (MM),
2014.

[27] A. Karpathy, A. Joulin, and L. Fei-Fei. Deep fragment
embeddings for bidirectional image-sentence mapping. In
Proceedings of the Twenty-eighth Annual Conference on
Neural Information Processing Systems (NIPS), 2014.

[28] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Com-
pression of deep convolutional neural networks for fast and low
power mobile applications. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

[29] M. Kristan et al. The visual object tracking vot2015 challenge
results. In IEEE International Conference on Computer Vision
Workshops (ICCVW) - Visual Object Tracking Challenge (VOT),
2015.

http://www.westmountainradio.com/pdf/PWRcheckManual.pdf
http://www.westmountainradio.com/pdf/PWRcheckManual.pdf
http://meerkatstreams.com/
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://shield.nvidia.com/
http://www.periscope.tv

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Proceedings of the Twenty-sixth Annual Conference on Neural
Information Processing Systems (NIPS), 2012.

[31] N. D. Lane, P. Georgiev, and L. Qendro. DeepEar: robust
smartphone audio sensing in unconstrained acoustic environ-
ments using deep learning. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp), pages 283–294, 2015.

[32] X. Lei, A. Senior, A. Gruenstein, and J. Sorensen. Accurate and
compact large vocabulary speech recognition on mobile devices.
In Proceedings of the 14th Annual Conference of the Interna-
tional Speech Communication Association (Interspeech), 2013.

[33] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional
neural network cascade for face detection. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5325–5334, 2015.

[34] R. LiKamWa and L. Zhong. Starfish: Efficient concurrency
support for computer vision applications. In Proceedings of the
13th International Conference on Mobile Systems, Applications,
and Services (MobiSys), pages 213–226, 2015.

[35] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and
T. Chen. Diannaoyu: An instruction set architecture for neural
networks. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA), 2016.

[36] S. Nath. ACE: exploiting correlation for energy-efficient
and continuous context sensing. In Proceedings of the 10th
International Conference on Mobile Systems, Applications,
and Services (MobiSys), pages 29–42, 2012.

[37] H. Pirsiavash and D. Ramanan. Detecting activities of daily
living in first-person camera views. In Computer Vision and
Pattern Recognition (CVPR), pages 2847–2854, 2012.

[38] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall,
and R. Govindan. Odessa: Enabling interactive perception
applications on mobile devices. In Proceedings of the 9th
International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2011.

[39] S. Rallapalli, A. Ganesan, K. Chintalapudi, V. N. Padmanabhan,
and L. Qiu. Enabling physical analytics in retail stores using
smart glasses. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking (MobiCom),
pages 115–126, 2014.

[40] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-
Net: ImageNet Classification Using Binary Convolutional
Neural Networks. arXiv:1603.05279, Mar. 2016.

[41] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detection. In
Computer Vision and Pattern Recognition (CVPR), 2016.

[42] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio. Fitnets: Hints for thin deep nets. In Proceedings
of the International Conference on Learning Representations
(ICLR), 2015.

[43] A. A. Sani, K. Boos, M. H. Yun, and L. Zhong. Rio: a system
solution for sharing I/O between mobile systems. In Proceed-
ings of the 12th International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 259–272, 2014.

[44] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proceedings
of the International Conference on Learning Representations
(ICLR), 2015.

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[46] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace:
Closing the Gap to Human-Level Performance in Face
Verification. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[47] R. Tapu, B. Mocanu, and T. B. Zaharia. ALICE: A smartphone
assistant used to increase the mobility of visual impaired people.
Journal of Ambient Intelligence and Smart Environments
(JAISE), 7(5):659–678, 2015.

[48] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2001.

[49] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun
database: Large-scale scene recognition from abbey to zoo.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2010.

[50] D. Yu, J. Li, D. Yu, M. Seltzer, and Y. Gong. Singular value
decomposition based low-footprint speaker adaptation and
personalization for deep neural network. In Proceedings of
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2014.

[51] D. Yu, F. Seide, G. Li, and L. Deng. Exploiting sparseness in
deep neural networks for large vocabulary speech recognition.
In Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2012.

[52] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning deep features for scene recognition using places
database. In Proceedings of the Twenty-eighth Annual Confer-
ence on Neural Information Processing Systems (NIPS), 2014.

